Knots, Braids And Mobius Strips - Particle Physics And The Geometry Of Elementarity: An Alternative View

Knots, Braids And Mobius Strips - Particle Physics And The Geometry Of Elementarity: An Alternative View

Author: Jack Shulman Avrin

Publisher: World Scientific

Published: 2015-03-13

Total Pages: 357

ISBN-13: 9814616028

DOWNLOAD EBOOK

Elementary particles in this book exist as Solitons in-and-of the fabric of spacetime itself. As such they are characterized by their geometry, that is their topology and configuration which lead directly to their physical attributes and behavior as well as to a simplification and reduction of assumptions and the importation of parameter values. The emphasis of the book is thus on that geometry, the algebraic geometry associated with taxonomical issues and the differential geometry that determines the physics as well as on simplifying the results. In itself, however, the process of assembling and developing what eventually went into the book has been a singularly rewarding journey. Along the way some fascinating insights and connections to known physical attributes and theories emerge, some predictable but others unbidden and even unanticipated. The book is intended to summarize that journey in a way that, readers with a range of backgrounds will find interesting and provocative. Connections to other physical theories and subjects are also discussed. A most gratifying development is the emergence of a unifying principle underlying the epistemological structure of not only the elementary particles but of such diverse fields as Radar, Quantum mechanics, Biology, Cosmology and the Philosophy of science.


Knots, Braids and Möbius Strips

Knots, Braids and Möbius Strips

Author: Jack Avrin

Publisher: World Scientific Publishing Company Incorporated

Published: 2015

Total Pages: 332

ISBN-13: 9789814616003

DOWNLOAD EBOOK

Elementary particles in this book exist as Solitons in-and-of the fabric of spacetime itself. As such they are characterized by their geometry, that is their topology and configuration which lead directly to their physical attributes and behavior as well as to a simplification and reduction of assumptions and the importation of parameter values. The emphasis of the book is thus on that geometry, the algebraic geometry associated with taxonomical issues and the differential geometry that determines the physics as well as on simplifying the results. In itself, however, the process of assembling and developing what eventually went into the book has been a singularly rewarding journey. Along the way some fascinating insights and connections to known physical attributes and theories emerge, some predictable but others unbidden and even unanticipated. The book is intended to summarize that journey in a way that, readers with a range of backgrounds will find interesting and provocative. Connections to other physical theories and subjects are also discussed. A most gratifying development is the emergence of a unifying principle underlying the epistemological structure of not only the elementary particles but of such diverse fields as Radar, Quantum mechanics, Biology, Cosmology and the Philosophy of science.


The Knot Book

The Knot Book

Author: Colin Conrad Adams

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 330

ISBN-13: 0821836781

DOWNLOAD EBOOK

Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.


Introduction to Knot Theory

Introduction to Knot Theory

Author: R. H. Crowell

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 191

ISBN-13: 1461299357

DOWNLOAD EBOOK

Knot theory is a kind of geometry, and one whose appeal is very direct because the objects studied are perceivable and tangible in everyday physical space. It is a meeting ground of such diverse branches of mathematics as group theory, matrix theory, number theory, algebraic geometry, and differential geometry, to name some of the more prominent ones. It had its origins in the mathematical theory of electricity and in primitive atomic physics, and there are hints today of new applications in certain branches of chemistryJ The outlines of the modern topological theory were worked out by Dehn, Alexander, Reidemeister, and Seifert almost thirty years ago. As a subfield of topology, knot theory forms the core of a wide range of problems dealing with the position of one manifold imbedded within another. This book, which is an elaboration of a series of lectures given by Fox at Haverford College while a Philips Visitor there in the spring of 1956, is an attempt to make the subject accessible to everyone. Primarily it is a text book for a course at the junior-senior level, but we believe that it can be used with profit also by graduate students. Because the algebra required is not the familiar commutative algebra, a disproportionate amount of the book is given over to necessary algebraic preliminaries.


Learning to Think Spatially

Learning to Think Spatially

Author: National Research Council

Publisher: National Academies Press

Published: 2005-02-03

Total Pages: 333

ISBN-13: 0309092086

DOWNLOAD EBOOK

Learning to Think Spatially examines how spatial thinking might be incorporated into existing standards-based instruction across the school curriculum. Spatial thinking must be recognized as a fundamental part of Kâ€"12 education and as an integrator and a facilitator for problem solving across the curriculum. With advances in computing technologies and the increasing availability of geospatial data, spatial thinking will play a significant role in the information-based economy of the twenty-first century. Using appropriately designed support systems tailored to the Kâ€"12 context, spatial thinking can be taught formally to all students. A geographic information system (GIS) offers one example of a high-technology support system that can enable students and teachers to practice and apply spatial thinking in many areas of the curriculum.


Mathematical Conversations

Mathematical Conversations

Author: Robin Wilson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 486

ISBN-13: 1461301955

DOWNLOAD EBOOK

Approximately fifty articles that were published in The Mathematical Intelligencer during its first eighteen years. The selection demonstrates the wide variety of attractive articles that have appeared over the years, ranging from general interest articles of a historical nature to lucid expositions of important current discoveries. Each article is introduced by the editors. "...The Mathematical Intelligencer publishes stylish, well-illustrated articles, rich in ideas and usually short on proofs. ...Many, but not all articles fall within the reach of the advanced undergraduate mathematics major. ... This book makes a nice addition to any undergraduate mathematics collection that does not already sport back issues of The Mathematical Intelligencer." D.V. Feldman, University of New Hamphire, CHOICE Reviews, June 2001.


How Surfaces Intersect in Space

How Surfaces Intersect in Space

Author: J. Scott Carter

Publisher: World Scientific

Published: 1995

Total Pages: 344

ISBN-13: 9789810220662

DOWNLOAD EBOOK

This marvelous book of pictures illustrates the fundamental concepts of geometric topology in a way that is very friendly to the reader. It will be of value to anyone who wants to understand the subject by way of examples. Undergraduates, beginning graduate students, and non-professionals will profit from reading the book and from just looking at the pictures.


Formal Knot Theory

Formal Knot Theory

Author: Louis H. Kauffman

Publisher: Courier Corporation

Published: 2006-01-01

Total Pages: 274

ISBN-13: 048645052X

DOWNLOAD EBOOK

This exploration of combinatorics and knot theory is geared toward advanced undergraduates and graduate students. The author, Louis H. Kauffman, is a professor in the Department of Mathematics, Statistics, and Computer Science at the University of Illinois at Chicago. Kauffman draws upon his work as a topologist to illustrate the relationships between knot theory and statistical mechanics, quantum theory, and algebra, as well as the role of knot theory in combinatorics. Featured topics include state, trails, and the clock theorem; state polynomials and the duality conjecture; knots and links; axiomatic link calculations; spanning surfaces; the genus of alternative links; and ribbon knots and the Arf invariant. Key concepts are related in easy-to-remember terms, and numerous helpful diagrams appear throughout the text. The author has provided a new supplement, entitled "Remarks on Formal Knot Theory," as well as his article, "New Invariants in the Theory of Knots," first published in The American Mathematical Monthly, March 1988.


Applications of Algebraic Topology

Applications of Algebraic Topology

Author: S. Lefschetz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 190

ISBN-13: 1468493671

DOWNLOAD EBOOK

This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.


On Knots

On Knots

Author: Louis H. Kauffman

Publisher: Princeton University Press

Published: 1987

Total Pages: 500

ISBN-13: 9780691084350

DOWNLOAD EBOOK

On Knots is a journey through the theory of knots, starting from the simplest combinatorial ideas--ideas arising from the representation of weaving patterns. From this beginning, topological invariants are constructed directly: first linking numbers, then the Conway polynomial and skein theory. This paves the way for later discussion of the recently discovered Jones and generalized polynomials. The central chapter, Chapter Six, is a miscellany of topics and recreations. Here the reader will find the quaternions and the belt trick, a devilish rope trick, Alhambra mosaics, Fibonacci trees, the topology of DNA, and the author's geometric interpretation of the generalized Jones Polynomial. Then come branched covering spaces, the Alexander polynomial, signature theorems, the work of Casson and Gordon on slice knots, and a chapter on knots and algebraic singularities.The book concludes with an appendix about generalized polynomials.