Kinetic Competition Growth Mechanism and Phase Manipulation of Silicide Nanowires in Solid State Reaction

Kinetic Competition Growth Mechanism and Phase Manipulation of Silicide Nanowires in Solid State Reaction

Author: Yu Chen

Publisher:

Published: 2014

Total Pages: 82

ISBN-13:

DOWNLOAD EBOOK

The first phase selection and the phase formation sequence between metal and silicon (Si) couples are indispensably significant to microelectronics. With increasing scaling of device dimension to nano regime, established thermodynamic models in bulk and thin film fail to apply in one dimensional (1-D) nanostructures. Herein, we use a kinetic competition model to explain the phase formation sequence of 1-D nickel (Ni) silicides: multiple Ni silicides coexist at the initial stage and then the fastest one wins out as the first phase in a following growth competition. With kinetic parameters extracted from in-situ transmission electron microscope (TEM) observations, we quantitatively explain the unique size dependant first phase formation and the phase formation sequence changes in 1-D structures. We can further control the first phase by selectively enhancing or suppressing the growth rate of silicides through template structure modifications. Growth rate diffusion limited phases can be greatly enhanced in a porous Si nanowire (NW) template due to short diffusion paths. On the other hand, a thick aluminum oxide (Al2O3) shell around the NW is applied to impede the growth of large volume diffusion limited phases including Ni31Si12, [delta]-Ni2Si and [theta]-Ni2Si. Moreover, a thin platinum (Pt) interlayer between Si and Ni is used to suppress the nucleation of NiSi2. Together, with the thick shell and Pt interlayer, we can suppress all competing silicides and render slow growing NiSi to form as the first phase. The resistivity of Pt doped NiSi (denoted as Ni(Pt)Si) NW are found compatible to pure NiSi from a two terminal and four terminal measurement. Controlled formation of Ni31Si12, [delta]-Ni2Si, [theta]-Ni2Si, NiSi or NiSi2 as the first phase has also been achieved. To examine the kinetic competition model, 1-D cobalt (Co) and palladium (Pd) silicide formations are also studied and analyzed kinetically. A thick shell is found effective to suppress the Pd silicide NW broken at the interface.


Semiconductor Nanowires

Semiconductor Nanowires

Author: J Arbiol

Publisher: Elsevier

Published: 2015-03-31

Total Pages: 573

ISBN-13: 1782422633

DOWNLOAD EBOOK

Semiconductor nanowires promise to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications covers advanced materials for nanowires, the growth and synthesis of semiconductor nanowires—including methods such as solution growth, MOVPE, MBE, and self-organization. Characterizing the properties of semiconductor nanowires is covered in chapters describing studies using TEM, SPM, and Raman scattering. Applications of semiconductor nanowires are discussed in chapters focusing on solar cells, battery electrodes, sensors, optoelectronics and biology. Explores a selection of advanced materials for semiconductor nanowires Outlines key techniques for the property assessment and characterization of semiconductor nanowires Covers a broad range of applications across a number of fields


Atomic Layer Deposition for Semiconductors

Atomic Layer Deposition for Semiconductors

Author: Cheol Seong Hwang

Publisher: Springer Science & Business Media

Published: 2013-10-18

Total Pages: 266

ISBN-13: 146148054X

DOWNLOAD EBOOK

Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.


Flash Lamp Annealing

Flash Lamp Annealing

Author: Lars Rebohle

Publisher:

Published: 2019

Total Pages: 304

ISBN-13: 9783030233006

DOWNLOAD EBOOK

This book provides a comprehensive survey of the technology of flash lamp annealing (FLA) for thermal processing of semiconductors. It gives a detailed introduction to the FLA technology and its physical background. Advantages, drawbacks and process issues are addressed in detail and allow the reader to properly plan and perform their own thermal processing. Moreover, this books gives a broad overview of the applications of flash lamp annealing, including a comprehensive literature survey. Several case studies of simulated temperature profiles in real material systems give the reader the necessary insight into the underlying physics and simulations. This book is a valuable reference work for both novice and advanced users.


Photodiodes

Photodiodes

Author: Jeong Woo Park

Publisher: BoD – Books on Demand

Published: 2011-07-29

Total Pages: 460

ISBN-13: 9533075309

DOWNLOAD EBOOK

Photodiodes or photodetectors are in one boat with our human race. Efforts of people in related fields are contained in this book. This book would be valuable to those who want to obtain knowledge and inspiration in the related area.


Nanotechnology in Catalysis 3

Nanotechnology in Catalysis 3

Author: Bing Zhou

Publisher: Springer Science & Business Media

Published: 2007-09-05

Total Pages: 342

ISBN-13: 0387346880

DOWNLOAD EBOOK

This volume continues the tradition formed in Nanotechnology in Catalysis 1 and 2. As with those books, this one is based upon an ACS symposium. Some of the most illustrious names in heterogeneous catalysis are among the contributors. The book covers: Design, synthesis, and control of catalysts at nanoscale; understanding of catalytic reaction at nanometer scale; characterization of nanomaterials as catalysts; nanoparticle metal or metal oxides catalysts; nanomaterials as catalyst supports; new catalytic applications of nanomaterials.


Silicide Technology for Integrated Circuits

Silicide Technology for Integrated Circuits

Author: Institution of Electrical Engineers

Publisher: IET

Published: 2004-12-21

Total Pages: 302

ISBN-13: 9780863413520

DOWNLOAD EBOOK

This is the first book to provide guidance on the development and application of metal silicide technology as it emerges from the scientific to the prototype and manufacturing stages. Other key topics covered are fundamentals, present and future silicide technology for Si-based devices, and characterisation methods. Suitable for engineers and students in microelectronics.


Advancing Silicon Carbide Electronics Technology II

Advancing Silicon Carbide Electronics Technology II

Author: Konstantinos Zekentes

Publisher: Materials Research Forum LLC

Published: 2020-03-15

Total Pages: 292

ISBN-13: 164490067X

DOWNLOAD EBOOK

The book presents an in-depth review and analysis of Silicon Carbide device processing. The main topics are: (1) Silicon Carbide Discovery, Properties and Technology, (2) Processing and Application of Dielectrics in Silicon Carbide Devices, (3) Doping by Ion Implantation, (4) Plasma Etching and (5) Fabrication of Silicon Carbide Nanostructures and Related Devices. The book is also suited as supplementary textbook for graduate courses. Keywords: Silicon Carbide, SiC, Technology, Processing, Semiconductor Devices, Material Properties, Polytypism, Thermal Oxidation, Post Oxidation Annealing, Surface Passivation, Dielectric Deposition, Field Effect Mobility, Ion Implantation, Post Implantation Annealing, Channeling, Surface Roughness, Dry Etching, Plasma Etching, Ion Etching, Sputtering, Chemical Etching, Plasma Chemistry, Micromasking, Microtrenching, Nanocrystal, Nanowire, Nanotube, Nanopillar, Nanoelectromechanical Systems (NEMS).


Nanoscale Science and Technology

Nanoscale Science and Technology

Author: Robert Kelsall

Publisher: John Wiley & Sons

Published: 2005-11-01

Total Pages: 472

ISBN-13: 0470020865

DOWNLOAD EBOOK

Nanotechnology is a vital new area of research and development addressing the control, modification and fabrication of materials, structures and devices with nanometre precision and the synthesis of such structures into systems of micro- and macroscopic dimensions. Future applications of nanoscale science and technology include motors smaller than the diameter of a human hair and single-celled organisms programmed to fabricate materials with nanometer precision. Miniaturisation has revolutionised the semiconductor industry by making possible inexpensive integrated electronic circuits comprised of devices and wires with sub-micrometer dimensions. These integrated circuits are now ubiquitous, controlling everything from cars to toasters. The next level of miniaturisation, beyond sub-micrometer dimensions into nanoscale dimensions (invisible to the unaided human eye) is a booming area of research and development. This is a very hot area of research with large amounts of venture capital and government funding being invested worldwide, as such Nanoscale Science and Technology has a broad appeal based upon an interdisciplinary approach, covering aspects of physics, chemistry, biology, materials science and electronic engineering. Kelsall et al present a coherent approach to nanoscale sciences, which will be invaluable to graduate level students and researchers and practising engineers and product designers.


Materials Chemistry

Materials Chemistry

Author: Bradley D. Fahlman

Publisher: Springer

Published: 2018-08-28

Total Pages: 817

ISBN-13: 9402412557

DOWNLOAD EBOOK

The 3rd edition of this successful textbook continues to build on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field — in a concise format. The 3rd edition offers significant updates throughout, with expanded sections on sustainability, energy storage, metal-organic frameworks, solid electrolytes, solvothermal/microwave syntheses, integrated circuits, and nanotoxicity. Most appropriate for Junior/Senior undergraduate students, as well as first-year graduate students in chemistry, physics, or engineering fields, Materials Chemistry may also serve as a valuable reference to industrial researchers. Each chapter concludes with a section that describes important materials applications, and an updated list of thought-provoking questions.