This volume of the Journal of Biomimetics, Biomaterials and Biomedical Engineering covers topical issue of biomimetic approach to the development of modern means of a wide range of industrial applications, the new solutions in the field of biomedical engineering and of pharmacological practice and also illuminates the results of the latest solutions in the field of development of biomaterials and their application.
This volume of the "Journal of Biomimetics, Biomaterials and Biomedical Engineering" covers topical issue of biomimetic approach to the development of modern means of a wide range of industrial applications, the new solutions in the field of biomedical engineering and of pharmacological practice and also illuminates the results of the latest solutions in the field of development of biomaterials and their application.
The main topic of this volume of the "Journal of Biomimetics, Biomaterials and Biomedical Engineering" is a special textile application in biomedical practice for wound and pressure ulcer prevention and in sport for trauma defence, procuring thermal comfort and monitoring of physical parameters during the training. In this issue, readers also can find research results on the influence of bioactive and bio-inert ceramic powders on tribology properties of polymer matrix composite dentures.
This journal's volume is devoted to bioceramics such as hydroxyapatite for coating titanium bone implants, some dental caries treatment issues, pharma chemistry, chemistry for food production and the original decision for bioremediation of ammonia.
The 51st volume of "Journal of Biomimetics, Biomaterials and Biomedical Engineering" contains papers that reflect the latest results of scientific research and engineering decisions in the fields of biomaterials for implantology and prosthesis, biomechanics approach for human motion rehabilitation; the processing of medical images, and medical signals for the goals of various diagnostic purposes; application of information technologies in the biomedical practice. We hope that this volume will be helpful for many researchers and engineers from the different branches of biomedical engineering.
This book is the second of two volumes that together offer a comprehensive account of cutting-edge advances in the development of biomaterials for use within tissue engineering and regenerative medicine. In this volume, which is devoted to biomimetic biomaterials, the opening section discusses bone regeneration by means of duck’s feet-derived collagen scaffold and the use of decellularized extracellular matrices. The role of various novel biomimetic hydrogels in regenerative medicine is then considered in detail. The third section focuses on the control of stem cell fate by biomimetic biomaterials, covering exosome-integrated biomaterials for bone regeneration, cellular responses to materials for biomedical engineering, and the regulation of stem cell functions by micropatterned structures. Finally, the use of nano-intelligent biocomposites in regenerative medicine is addressed, with discussion of, for example, recent advances in biphasic calcium phosphate bioceramics and blood-contacting polymeric biomaterials. The authors are recognized experts in the interdisciplinary field of regenerative medicine and the book will be of value for all with an interest in regenerative medicine based on biomaterials.
Provides cutting-edge advances in biologically inspired, biomimetically-designed materials and systems for developing the next generation of nanobiomaterials and tissue engineering Humans have been trying to learn biomimetics for centuries by mimicking nature and its behaviors and processes in order to develop novel materials, structures, devices, and technologies. The most substantial benefits of biomimetics will likely be in human medical applications, such as developing bioprosthetics that mimic real limbs and sensor-based biochips that interface with the human brain to assist in hearing and sight. Biomimetics: Advancing Nanobiomaterials and Tissue Engineering seeks to compile all aspects of biomimetics, from fundamental principles to current technological advances, along with future trends in the development of nanoscale biomaterials and tissue engineering. The book details research, useful in inspiring new ideas, that seeks the principles and rules implemented by nature, such as self-assembly, a bottom-up approach in which molecular structures are assembled with little or no external intervention to generate nano, micro, and macro structures. Other subjects covered in the book include: Cartilage tissue engineering as an emerging technology The fabrication methods of nanofibrous scaffolds and their potential utility in bone tissue engineering applications Dental and craniofacial tissue engineering with bioactive polymers and bionanomaterials Strategies to prevent bacterial adhesion on biomaterials The latest achievements in biomimetic ECM scaffolds prepared from cultured cells Graphene oxide and graphene as promising scaffold materials Stem cells as a source for building tissues or organs in the laboratory
The interaction between cells, tissues and biomaterial surfaces are the highlights of the book "Advances in Biomimetics". In this regard the effect of nanostructures and nanotopographies and their effect on the development of a new generation of biomaterials including advanced multifunctional scaffolds for tissue engineering are discussed. The 2 volumes contain articles that cover a wide spectrum of subject matter such as different aspects of the development of scaffolds and coatings with enhanced performance and bioactivity, including investigations of material surface-cell interactions.
Biomimicry for Materials, Design and Habitats: Innovations and Applications and is a survey of the recent work of recognized experts in a variety of fields who employ biomimicry and related paradigms to solve key problems of interest within design, science, technology, and society. Topics covered include innovations from biomimicry in materials, product design, architecture, and biological sciences. The book is a useful resource for educators, designers, researchers, engineers, and materials scientists, taking them from the theory behind biomimicry to real world applications. Living systems have evolved innovative solutions to challenges that humans face on a daily basis. Nonlinear multifunctional systems that have a symbiotic relationship with their environment are the domain of nature. Morphological solutions for buildings inspired by nature can be used for skins, surfaces, and structures to facilitate environmental adaptation of buildings to increase occupant comfort and reduce energy demands. Birds can teach us to produce novel structures, 3D printing can be informed by oysters and mussels, and mycelium may show us the way to fabricate new biocomposites in architecture. Therefore, it is in nature that we seek inspiration for the solutions to tomorrow's challenges. - Presents new directions in education and the various applications of biomimicry within industry, including bio-inspired entrepreneurship - Discusses the role of biomimicry in education, innovation, and product design - Covers applications in systems engineering and design, novel materials with applications in 3D printing, and bio-inspired architecture - Includes perspectives on sustainability detailing the role that bio-inspiration or biomimicry plays in sustainability