Masafumi Akahira and Kei Takeuchi have collaborated in research on mathematical statistics for nearly thirty years and have published many articles and papers. This volume is a collection of their papers, some published in well-known and others in lesser-known journals. The papers cover various fields, but the main subject is the theory of estimation — asymptotic, non-regular, sequential, etc. All the papers are theoretical in nature, but have implications for applied problems.
This volume contains translations of papers that originally appeared in the Japanese journal Sugaku. The papers range over a variety of topics in probability theory, statistics, and applications. This volume is suitable for graduate students and research mathematicians interested in probability and statistics.
This book presents new findings on nonregular statistical estimation. Unlike other books on this topic, its major emphasis is on helping readers understand the meaning and implications of both regularity and irregularity through a certain family of distributions. In particular, it focuses on a truncated exponential family of distributions with a natural parameter and truncation parameter as a typical nonregular family. This focus includes the (truncated) Pareto distribution, which is widely used in various fields such as finance, physics, hydrology, geology, astronomy, and other disciplines. The family is essential in that it links both regular and nonregular distributions, as it becomes a regular exponential family if the truncation parameter is known. The emphasis is on presenting new results on the maximum likelihood estimation of a natural parameter or truncation parameter if one of them is a nuisance parameter. In order to obtain more information on the truncation, the Bayesian approach is also considered. Further, the application to some useful truncated distributions is discussed. The illustrated clarification of the nonregular structure provides researchers and practitioners with a solid basis for further research and applications.
In this definitive book, D. R. Cox gives a comprehensive and balanced appraisal of statistical inference. He develops the key concepts, describing and comparing the main ideas and controversies over foundational issues that have been keenly argued for more than two-hundred years. Continuing a sixty-year career of major contributions to statistical thought, no one is better placed to give this much-needed account of the field. An appendix gives a more personal assessment of the merits of different ideas. The content ranges from the traditional to the contemporary. While specific applications are not treated, the book is strongly motivated by applications across the sciences and associated technologies. The mathematics is kept as elementary as feasible, though previous knowledge of statistics is assumed. The book will be valued by every user or student of statistics who is serious about understanding the uncertainty inherent in conclusions from statistical analyses.
Development in Statistics, Volume 3 is a collection of papers that deals with asymptotic expansions in parametric statistical theory, orthogonal models for contingency tables, statistical concepts in economic analysis, and an exposition of path analysis. One paper presents an inference model based on a sample of independent identically distributed observations to arrive at a general statistical theory founded on asymptotic methods. Another paper discusses the applicability of statistical concepts to economics and related areas, with emphasis on not-so-obvious applications (known as utility and expected loss). The paper explains information theory concepts for the measurement of income inequality, intergenerational occupational mobility, as well as to first- and second-order moments of univariate and bivariate distributions (such as measurements applied to the cost of living and of real income). One paper notes that the starting point in path analysis is a linear predictor (in the least-squares sense) for one random variable in terms of a number of others. The paper adds that the work of Koopmans and Hood (1953) on econometrics is part of the starting point. Statisticians, economists, mathematicians, students, and professors of calculus or advanced mathematics will surely appreciate the collection.