Research in string theory has generated a rich interaction with algebraic geometry, with exciting work that includes the Strominger-Yau-Zaslow conjecture. This monograph builds on lectures at the 2002 Clay School on Geometry and String Theory that sought to bridge the gap between the languages of string theory and algebraic geometry.
The 20 sporadics involved in the Monster, the largest sporadic group, constitute the Happy Family. This book is a leisurely and rigorous study of two of their three generations. The level is suitable for graduate students with little background in general finite group theory, established mathematicians and mathematical physicists.
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.
This paper introduces the concept of single–valued neutrosophic EQ–subalgebras, single–valued neutrosophic EQ–prefilters and single–valued neutrosophic EQ–filters. We study some properties of single–valued neutrosophic EQ–prefilters and show how to construct single–valued neutrosophic EQ–filters. Finally, the relationship between single–valued neutrosophic EQ–filters and EQ–filters are studied.
Fuzzy graphs (FGs) and their generalizations have played an essential role in dealing with real-life problems involving uncertainties. The goal of this article is to show some serious flaws in the existing definitions of several root-level generalized FG structures with the help of some counterexamples. To achieve this, first, we aim to improve the existing definition for interval-valued FG, interval-valued intuitionistic FG and their complements, as these existing definitions are not well-defined; i.e., one can obtain some senseless intervals using the existing definitions. The limitations of the existing definitions and the validity of the new definitions are supported with some examples.
Fuzzy set theory was introduced by Zadeh [17] to solve diculties in dealing with uncertainties. Since then the theory of fuzzy sets and fuzzy logic have been examined by many researchers to solve many real life problems, involving ambiguous and uncertain environment. Atanassov [3] introduced the concept of intuitionistic fuzzy set as an extension of Zadeh's fuzzy set [17]. An intuitionistic fuzzy set can be viewed as an alternative approach when available information is not sucient to de ne the impreciseness by the conventional fuzzy set.
Contains sections on Several complex variables, Pseudo differential operators and partial differential equations, Harmonic analysis in other settings: probability, martingales, local fields, and Lie groups and functional analysis.
This paper derived single-valued neutrosophic graphs from single-valued neutrosophic hypergraphs via strong equivalence relation. We show that any weak single-valued neutrosophic graph is a derived single-valued neutrosophic graph and any linear weak single-valued neutrosophic tree is an extendable linear single-valued neutrosophic tree.