Iteration theory has its roots in the operation of substituting functions into itself. This has led to questions like that of the behaviour of functions by repeating this substitution and when the number of iterations tends to infinity. The terms 'orbit' and 'chaos' appropriately describe this behaviour. Dynamical systems and the theory of functional equations play important roles in this field.
This is the first collective study of a foundational text in modern philosophy and logic, Gottlob Frege's Basic Laws of Arithmetic. Twenty-two Frege scholars discuss a wide range of philosophical and logical topics arising from Basic Laws of Arithmetic, and demonstrate the technical and philosophical richness of this great work.
Aimed at both students and researchers in philosophy, mathematics and the history of science, this edited volume, authored by leading scholars, highlights foremost developments in both the philosophy and history of modern mathematics.
Chaotic behavior arises in a variety of control settings. In some cases, it is beneficial to remove this behavior; in others, introducing or taking advantage of the existing chaotic components can be useful for example in cryptography. Chaos in Automatic Control surveys the latest methods for inserting, taking advantage of, or removing chaos in a variety of applications. This book supplies the theoretical and pedagogical basis of chaos in control systems along with new concepts and recent developments in the field. Presented in three parts, the book examines open-loop analysis, closed-loop control, and applications of chaos in control systems. The first section builds a background in the mathematics of ordinary differential and difference equations on which the remainder of the book is based. It includes an introductory chapter by Christian Mira, a pioneer in chaos research. The next section explores solutions to problems arising in observation and control of closed-loop chaotic control systems. These include model-independent control methods, strategies such as H-infinity and sliding modes, polytopic observers, normal forms using homogeneous transformations, and observability normal forms. The final section explores applications in wireless transmission, optics, power electronics, and cryptography. Chaos in Automatic Control distills the latest thinking in chaos while relating it to the most recent developments and applications in control. It serves as a platform for developing more robust, autonomous, intelligent, and adaptive systems.
This book is essentially devoted to complex properties (Phase plane structure and bifurcations) of two-dimensional noninvertible maps, i.e. maps having either a non-unique inverse, or no real inverse, according to the plane point. They constitute models of sets of discrete dynamical systems encountered in Engineering (Control, Signal Processing, Electronics), Physics, Economics, Life Sciences. Compared to the studies made in the one-dimensional case, the two-dimensional situation remained a long time in an underdeveloped state. It is only since these last years that the interest for this research has increased. Therefore the book purpose is to give a global presentation of a matter, available till now only in a partial form. Fundamental notions and tools (such as “critical manifolds”), as the most part of results, are accompanied by many examples and figures.
These proceedings contain a collection of papers on Combinatorial Dynamics, from the lectures that took place during the international symposium, Thirty Years after Sharkovskiĭ's Theorem: New Perspectives, which was held at La Manga del Mar Menor, Murcia, Spain, from June 13 to June 18, 1994.Since Professor A N Sharkovskiĭ's landmark paper on the coexistence of periods for interval maps, several lines of research have been developed, opening applications of models to help understand a number of phenomena from a wide variety of fields, such as biology, economics, physics, etc. The meeting served to summarize the progress made since Professor Sharkovskiĭ's discovery, and to explore new directions.
This volume constitutes the refereed post-conference proceedings of the Third International Conference on the History and Philosophy of Computing, held in Pisa, Italy in October 2015. The 18 full papers included in this volume were carefully reviewed and selected from the 30 papers presented at the conference. They cover topics ranging from the world history of computing to the role of computing in the humanities and the arts.
maps whose topological entropy is equal to zero (i.e., maps that have only cyeles of pe 2 riods 1,2,2 , ... ) are studied in detail and elassified. Various topological aspects of the dynamics of unimodal maps are studied in Chap ter 5. We analyze the distinctive features of the limiting behavior of trajectories of smooth maps. In particular, for some elasses of smooth maps, we establish theorems on the number of sinks and study the problem of existence of wandering intervals. In Chapter 6, for a broad elass of maps, we prove that almost all points (with respect to the Lebesgue measure) are attracted by the same sink. Our attention is mainly focused on the problem of existence of an invariant measure absolutely continuous with respect to the Lebesgue measure. We also study the problem of Lyapunov stability of dynamical systems and determine the measures of repelling and attracting invariant sets. The problem of stability of separate trajectories under perturbations of maps and the problem of structural stability of dynamical systems as a whole are discussed in Chap ter 7. In Chapter 8, we study one-parameter families of maps. We analyze bifurcations of periodic trajectories and properties of the set of bifurcation values of the parameter, in eluding universal properties such as Feigenbaum universality.