Iteration of Rational Functions of One Complex Variable and Basins of Attractive Fixed Points
Author: Gregg Willard Saunders
Publisher:
Published: 1984
Total Pages: 486
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Gregg Willard Saunders
Publisher:
Published: 1984
Total Pages: 486
ISBN-13:
DOWNLOAD EBOOKAuthor: Alan F. Beardon
Publisher: Springer Science & Business Media
Published: 2000-09-27
Total Pages: 308
ISBN-13: 9780387951515
DOWNLOAD EBOOKThis book focuses on complex analytic dynamics, which dates from 1916 and is currently attracting considerable interest. The text provides a comprehensive, well-organized treatment of the foundations of the theory of iteration of rational functions of a complex variable. The coverage extends from early memoirs of Fatou and Julia to important recent results and methods of Sullivan and Shishikura. Many details of the proofs have not appeared in print before.
Author: Stephen Smale
Publisher: World Scientific
Published: 2000
Total Pages: 670
ISBN-13: 9789810249939
DOWNLOAD EBOOKThis invaluable book contains the collected papers of Stephen Smale. These are divided into eight groups: topology; calculus of variations; dynamics; mechanics; economics; biology, electric circuits and mathematical programming; theory of computation; miscellaneous. In addition, each group contains one or two articles by world leaders on its subject which comment on the influence of Smale's work, and another article by Smale with his own retrospective views.
Author: Roderick S C Wong
Publisher: World Scientific
Published: 2000-06-30
Total Pages: 659
ISBN-13: 9814493074
DOWNLOAD EBOOKThis invaluable book contains the collected papers of Stephen Smale. These are divided into eight groups: topology; calculus of variations; dynamics; mechanics; economics; biology, electric circuits and mathematical programming; theory of computation; miscellaneous. In addition, each group contains one or two articles by world leaders on its subject which comment on the influence of Smale's work, and another article by Smale with his own retrospective views.
Author: Robert Devaney
Publisher: CRC Press
Published: 2018-03-09
Total Pages: 280
ISBN-13: 0429981937
DOWNLOAD EBOOKThe study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.
Author: David Carfi
Publisher: American Mathematical Soc.
Published: 2013-10-24
Total Pages: 384
ISBN-13: 0821891480
DOWNLOAD EBOOKThis volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoît Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry and various aspects of dynamical systems in applied mathematics and the applications to other sciences. Also included are articles discussing a variety of connections between these subjects and various areas of physics, engineering, computer science, technology, economics and finance, as well as of mathematics (including probability theory in relation with statistical physics and heat kernel estimates, geometric measure theory, partial differential equations in relation with condensed matter physics, global analysis on non-smooth spaces, the theory of billiards, harmonic analysis and spectral geometry). The companion volume (Contemporary Mathematics, Volume 600) focuses on the more mathematical aspects of fractal geometry and dynamical systems.
Author: Daniel S. Alexander
Publisher: American Mathematical Soc.
Published: 2012
Total Pages: 474
ISBN-13: 0821844644
DOWNLOAD EBOOKThe theory of complex dynamics, whose roots lie in 19th-century studies of the iteration of complex function conducted by Koenigs, Schoder, and others, flourished remarkably during the first half of the 20th century, when many of the central ideas and techniques of the subject developed. This book paints a robust picture of the field of complex dynamics between 1906 and 1942 through detailed discussions of the work of Fatou, Julia, Siegel, and several others.
Author: Sergio Amat
Publisher: Springer
Published: 2016-09-27
Total Pages: 286
ISBN-13: 331939228X
DOWNLOAD EBOOKThis book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations, and their approximation.
Author: M. Ya Antimirov
Publisher: San Diego ; Toronto : Academic Press
Published: 1998
Total Pages: 516
ISBN-13:
DOWNLOAD EBOOKComplex Variables is an extended course in complex analysis and its applications for engineering students and for those who use complex analysis in their work. In addition to classical results, it includes results recently obtained by the authors. Antimirov, Kolyshkin, and Vaillancourt have combined a rigorous presentation with clarity and many solved examples. The text introduces the theory of functions of one complex variable, and presents an evaluation of many new integration formulae and the summation of new infinite series by the calculus of residue. The book also includes the Fatou-Julia theory for meromorphic functions for finding selective roots of some transcendental equations as found in the applications. The exercises provided in the text are elementary and aim at the understanding of the theory of analytic functions. Answers to odd-numbered exercises are in the back of the book; answers to even-numbered exercises are provided in an accompanying instructor's manual. Key Features: * Uses direct mathematical language, avoiding unnecessary abstract style * Contains planes of domain and image of mappings which are always clearly specified and well-illustrated with figures * Provides several new integration and summation formulas, which may eventually find their way into symbolic softwares * Includes a large collection of exercises * Expands entire functions in infinite products into simpler forms than those found in many textbooks * Presents fresh information on the dynamics of meromorphic functions to solve transcendental equation found in the applications
Author: Thomas Bloom
Publisher: Princeton University Press
Published: 1995-12-03
Total Pages: 366
ISBN-13: 9780691044286
DOWNLOAD EBOOKThe fifteen articles composing this volume focus on recent developments in complex analysis. Written by well-known researchers in complex analysis and related fields, they cover a wide spectrum of research using the methods of partial differential equations as well as differential and algebraic geometry. The topics include invariants of manifolds, the complex Neumann problem, complex dynamics, Ricci flows, the Abel-Radon transforms, the action of the Ricci curvature operator, locally symmetric manifolds, the maximum principle, very ampleness criterion, integrability of elliptic systems, and contact geometry. Among the contributions are survey articles, which are especially suitable for readers looking for a comprehensive, well-presented introduction to the most recent important developments in the field. The contributors are R. Bott, M. Christ, J. P. D'Angelo, P. Eyssidieux, C. Fefferman, J. E. Fornaess, H. Grauert, R. S. Hamilton, G. M. Henkin, N. Mok, A. M. Nadel, L. Nirenberg, N. Sibony, Y.-T. Siu, F. Treves, and S. M. Webster.