The large body of recent knowledge that has allowed the recent discovery of new ATPases and the partial clarification of structural and functional aspects of the already known ATPases are the subjects of this volume. A dozen ION-MOTIVE ATPases are discussed in terms of structure, site modification, catalysis, expression, hormonal and metabolic regulation and pharmacologic intervention.
This text addresses the question, How does the sodium pump pump'. A variety of primary structure information is available, and progress has been made in the functional characterization of the Na, K-pump, making the answer to this question possible, within reach of currently used techniques
The interdisciplinary field of Astrobiology constitutes a joint arena where provocative discoveries are coalescing concerning, e.g. the prevalence of exoplanets, the diversity and hardiness of life, and its increasingly likely chances for its emergence. Biologists, astrophysicists, biochemists, geoscientists and space scientists share this exciting mission of revealing the origin and commonality of life in the Universe. The members of the different disciplines are used to their own terminology and technical language. In the interdisciplinary environment many terms either have redundant meanings or are completely unfamiliar to members of other disciplines. The Encyclopedia of Astrobiology serves as the key to a common understanding. Each new or experienced researcher and graduate student in adjacent fields of astrobiology will appreciate this reference work in the quest to understand the big picture. The carefully selected group of active researchers contributing to this work and the expert field editors intend for their contributions, from an internationally comprehensive perspective, to accelerate the interdisciplinary advance of astrobiology.
This textbook provides a comprehensive overview on the diverse strategies invertebrate animals have developed for nitrogen excretion and maintenance of acid-base balance and summarizes the most recent findings in the field, obtained by state-of-the-art methodology. A broad range of terrestrial, freshwater and marine invertebrate groups are covered, including crustaceans, cephalopods, insects and worms. In addition the impact of current and future changes in ocean acidification on marine invertebrates due to anthropogenic CO2 release will be analyzed. The book addresses graduate students and young researchers interested in general animal physiology, comparative physiology and marine/aquatic animal physiology. Also it is an essential source for researchers dealing with the effects of increasing pCO2 levels on aquatic animals, of which the vast majority are indeed invertebrates. All chapters are peer-reviewed.
This volume of Current Topics in Membranes focuses on metal transmembrane transporters and pumps, a recently discovered family of membrane proteins with many important roles in the physiology of living organisms. The book summarizes the most recent advances in the field of metal ion transport and provides a broad overview of the major classes of transporters involved in homeostasis of heavy metals. Various families of the transporters and metal specificities are discussed with the focus on the structural and mechanistic aspects of their function and regulation. The reader will access information obtained through a variety of approaches ranging from X-ray crystallography to cell biology and bioinformatics, which have been applied to transporters identified in diverse biological systems, such as pathogenic bacteria, plants, humans and others. Field is cutting-edge and a lot of the information is new to research community Wide breadth of topic coverage Contributors of high renown and expertise
Membrane bioenergetics is one of the most rapidly growing areas within physico-chemical biology. Main aspects treated in this book include energy conservation and utilization by membrane-linked molecular mechanisms such as intracellular respiration, photosynthesis, transport phenomena, rotation of bacterial flagella, and the regulation of heat production.
Volume 5 of Biomembranes covers an important group of membrane proteins, the ATPases. The P-type ATPases couple the hydrolysis of ATP to the movement of ions across a membrane and are characterized by the formation of a phosphoyrlated intermediate. Included are the plasma membrane and muscle sarcoplasmic reticulum Ca2+ -ATPases, the (Na+ -K+) -ATPase, the gastric (H+ -K+) -ATPase, the plasma membrane H+ -ATPase of fungi and plants, the Mg2+ - transport ATPase, the Salmonella typhimurium, and the K+ -ATPase of Escherichia coli, KdpB. The other important classes of ATPase in eukaryotic systems are the vacuolar H+ -ATPases and the F0F1 ATP synthase, and, in bacteria, the anion-translocating ATPases, responsible for resistance to arsenicals and antimonials, and the (Na+ -Mg2+) -ATPase of Acholeplasma. Finally, eukaryotic systems contain a variety of ectonucleotidases important, for example, in hydrolysis of extracellular ATP released as a cotransmitter from cholinergic and adrenergic nerve terminals. Volume 5 of Biomembranes explores structure-function relationships for these mebrane-bound ATPases.
Biophysics is a rapidly-evolving interdisciplinary science that applies theories and methods of the physical sciences to questions of biology. Biophysics encompasses many disciplines, including physics, chemistry, mathematics, biology, biochemistry, medicine, pharmacology, physiology, and neuroscience, and it is essential that scientists working in these varied fields are able to understand each other's research. Comprehensive Biophysics, Nine Volume Set will help bridge that communication gap. Written by a team of researchers at the forefront of their respective fields, under the guidance of Chief Editor Edward Egelman, Comprehensive Biophysics, Nine Volume Set provides definitive introductions to a broad array of topics, uniting different areas of biophysics research - from the physical techniques for studying macromolecular structure to protein folding, muscle and molecular motors, cell biophysics, bioenergetics and more. The result is this comprehensive scientific resource - a valuable tool both for helping researchers come to grips quickly with material from related biophysics fields outside their areas of expertise, and for reinforcing their existing knowledge. Biophysical research today encompasses many areas of biology. These studies do not necessarily share a unique identifying factor. This work unites the different areas of research and allows users, regardless of their background, to navigate through the most essential concepts with ease, saving them time and vastly improving their understanding The field of biophysics counts several journals that are directly and indirectly concerned with the field. There is no reference work that encompasses the entire field and unites the different areas of research through deep foundational reviews. Comprehensive Biophysics fills this vacuum, being a definitive work on biophysics. It will help users apply context to the diverse journal literature offering, and aid them in identifying areas for further research Chief Editor Edward Egelman (E-I-C, Biophysical Journal) has assembled an impressive, world-class team of Volume Editors and Contributing Authors. Each chapter has been painstakingly reviewed and checked for consistent high quality. The result is an authoritative overview which ties the literature together and provides the user with a reliable background information and citation resource
Plants, unlike animals, are sessile. This demands that adverse changes in their environment are quickly recognized, distinguished and responded to with suitable reactions. Drought, heat, cold and salinity are among the major abiotic stresses that adversely affect plant growth and productivity. In general, abiotic stress often causes a series of morphological, physiological, biochemical and molecular changes that unfavorably affect plant growth, development and productivity. Drought, salinity, extreme temperatures (cold and heat) and oxidative stress are often interrelated; these conditions singularly or in combination induce cellular damage. To cope with abiotic stresses, of paramount significance is to understand plant responses to abiotic stresses that disturb the homeostatic equilibrium at cellular and molecular level in order to identify a common mechanism for multiple stress tolerance. This multi authored edited compilation attempts to put forth an all-inclusive biochemical and molecular picture in a systems approach wherein mechanism and adaptation aspects of abiotic stress are dealt with. The chief objective of the book hence is to deliver state of the art information for comprehending the effects of abiotic stress in plants at the cellular level.