Effects of Spanwise Thickness Variation on the Aerodynamic Characteristics of 35 Degree and 45 Degree Sweptback Wings of Aspect Ratio 6

Effects of Spanwise Thickness Variation on the Aerodynamic Characteristics of 35 Degree and 45 Degree Sweptback Wings of Aspect Ratio 6

Author: William D. Morrison

Publisher:

Published: 1951

Total Pages: 38

ISBN-13:

DOWNLOAD EBOOK

An aerodynamic investigation has been conducted in the Langley high-speed 7- by 10-foot tunnel to determine the effects of taper-in-thickness on the aerodynamics characteristics of wings having 35 and 45 degrees of sweep-back, aspect ratio 6, and taper ratio 0.60. The wings were tapered from NACA 65A009 airfoil sections at the root chord to NACA 65A003 airfoil sections at the tip chord. The test Mach number range was from 0.60 to 1.14 at a Reynolds number of the order of 500,000.


Investigation at Transonic Speeds of the Loading Over a 45 Degree Sweptback Wing Having an Aspect Ratio of 3, a Taper Ratio of 0.2, and Naca 65a004 Airfoil Sections

Investigation at Transonic Speeds of the Loading Over a 45 Degree Sweptback Wing Having an Aspect Ratio of 3, a Taper Ratio of 0.2, and Naca 65a004 Airfoil Sections

Author: JACK F. RUNCKEL

Publisher:

Published: 1961

Total Pages: 1

ISBN-13:

DOWNLOAD EBOOK

An investigation at transonic speeds of the loading over a 45 degree sweptback wing having an aspect ratio of 3, a taper ratio of 0.2, and NACA 65A004 airfoil sections was conducted in the Langley 16-foot transonic tunnel. Pressure measurements on the wing-body combi ation were obtained at angles of attack from 0 degrees to 26 degrees at Mach numbers from 0.80 to 0.98 and at angles of attack from 0 degrees to about 12 degrees at Mach numbers from 1.00 to 1.05. Reynolds number, based on the wing mean aerodynamic c ord varied from 7 times 10 to the 6th po er to 8.5 times 10 to the 6th power over the test Mach number range. Results of the investigation indicate that a highly swept shock originates at the juncture of the wing leading edge and the body at moderate angles of attack and has a large influence on the loading over the inboard wing sections. (Author).


An Investigation at Transonic Speeds of the Effects of Thickness Ratio and of Thickened Root Sections on the Aerodynamic Characteristics of Wings with 47 Degrees Sweepback, Aspect Ratio 3.5, and Taper Ratio 0.2 in the Slotted Test Section of the Langley 8-foot High-speed Tunnel

An Investigation at Transonic Speeds of the Effects of Thickness Ratio and of Thickened Root Sections on the Aerodynamic Characteristics of Wings with 47 Degrees Sweepback, Aspect Ratio 3.5, and Taper Ratio 0.2 in the Slotted Test Section of the Langley 8-foot High-speed Tunnel

Author: Ralph P. Bielat

Publisher:

Published: 1951

Total Pages: 38

ISBN-13:

DOWNLOAD EBOOK

Four wing-body combinations of the same plan form (47 degree sweep, 3.5 aspect ratio, and 0.2 taper ratio) were compared at transonic speeds in the Langley 8-foot high-speed tunnel. Three wings were 4, 6, and 9 percent thick; the fourth was 6 percent thick but, on the inner 0.4 span, tapered to 12-percent thickness at the roots.