Investigation Of Enhanced Titanium And Zinc Oxide Semiconductors For The Photodegradation Of Aqueous Organic Compounds

Investigation Of Enhanced Titanium And Zinc Oxide Semiconductors For The Photodegradation Of Aqueous Organic Compounds

Author: Innocent Udom

Publisher:

Published: 2014

Total Pages: 116

ISBN-13:

DOWNLOAD EBOOK

This research investigated the supported semiconductor photocatalysts (TiO2 and ZnO), particularly ZnO nanorods and nanowires, their synthesis methods, properties and corresponding effectiveness in photocatalysis. The effect of transition metal co-catalysts on the photocatalytic properties of TiO2 was investigated. Although TiO2 is the most extensively studied photocatalyst for water decontamination, ZnO, as presented in this work, could be a substitute because of its lower cost, relative energy bandgap and higher visible light photoactivity. Both photocatalysts were doped and screened for the decomposition of model contaminates, rhodamine B (RhB), phenol and methyl orange, under ultraviolet and/or visible light irradiation. In the photodegradation of RhB, TiO2/Ru 1% showed a superior photocatalytic activity relative to P25-TiO2 under broad-band irradiation, while doped ZnO-Ag resulted in better photodegradation of methyl orange, compared to P25-TiO2, under visible light irradiation.


Multifunctional Oxide-Based Materials: From Synthesis to Application

Multifunctional Oxide-Based Materials: From Synthesis to Application

Author: Teofil Jesionowski

Publisher: MDPI

Published: 2019-09-03

Total Pages: 204

ISBN-13: 3039213970

DOWNLOAD EBOOK

The book deals with novel aspects and perspectives in metal oxide and hybrid material fabrication. The contributions are mainly focused on the search for a new group of advanced materials with designed physicochemical properties, especially an expanded porous structure and defined surface activity. The proposed technological procedures result in an enhanced activity of the synthesized hybrid materials, which is of great importance when considering their potential fields of application. The use of such materials in different technological disciplines, including aspects associated with environmental protection, allows for the verification of the proposed synthesis method. Thus, it can be stated that those aspects are of interdisciplinary character and may be located at the interface of three scientific disciplines—chemistry, materials science, and engineering—as well as environmental protection. Furthermore, the presented scientific scope is in some way an answer to the continuous demand for such types of materials and opens new perspectives for their practical use


Green Photocatalytic Semiconductors

Green Photocatalytic Semiconductors

Author: Seema Garg

Publisher: Springer Nature

Published: 2021-09-20

Total Pages: 855

ISBN-13: 303077371X

DOWNLOAD EBOOK

This book comprises a detailed overview on the role of photocatalysts for environmental remediation, hydrogen production and carbon dioxide reduction. Effective ways to enhance the photocatalytic activity of the material via doping, hybrid material, laser light and nanocomposites have been discussed in this book. The book also further elaborates the role of metal nanoparticles, rare earth doping, sensitizers, surface oxygen vacancy, interface engineering and band gap engineering for enhancing the photocatalytic activity. An approach to recover the photocatalytic material via immobilization is also presented. This book brings to light much of the recent research in the development of such semiconductor photocatalytic systems. The book will thus be of relevance to researchers in the field of: material science, environmental science & technology, photocatalytic applications, newer methods of energy generation & conversion and industrial applications.


Investigation of TiO2 and InVO4-TiO2 Semiconductors for the Photocatalytic Degradation of Aqueous Organics

Investigation of TiO2 and InVO4-TiO2 Semiconductors for the Photocatalytic Degradation of Aqueous Organics

Author: Sandra L. Pettit

Publisher:

Published: 2014

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Parametric studies of the visible spectrum photodegradation of methyl orange, an azo dye, and 2-chlorophenol provide a basis for analysis. Methyl orange was utilized to ascertain the effect of pure and mixed phase titania in the semiconductor composites. The TiO2 photodegradation of geosmin and MIB has been previously demonstrated in small-scale batch slurry reactions. Slurry systems require the downstream separation of catalyst from the liquid. Laboratory trials use centrifugation or micro-filtration. Alternatively, immobilization of the photocatalyst could allow scale-up of the process. Here, titania was immobilized on glass plate substrates using an ethanol spray technique. Finally, naturally tainted waters may contain a number of constituents in addition to the target compounds. In recirculating aquaculture systems, the water contains natural organic matter (NOM), ammonia, nitrite/ nitrate, and carbonate species. These constituents may block light penetration, block reaction sites, scavenge hydroxyl radicals, or affect the surface chemistry of the catalyst. Further, geosmin and MIB concentrations are extremely low, in the ppt range. Naturally tainted waters from MOTE Marine Laboratory Aquaculture Research Park are treated in the laboratory and in situ to demonstrate TiO2 degradation efficiency for trace concentration geosmin and MIB degradation in a complex water matrix.


Application of Nanotechnology in Water Research

Application of Nanotechnology in Water Research

Author: Ajay Kumar Mishra

Publisher: John Wiley & Sons

Published: 2014-06-23

Total Pages: 562

ISBN-13: 1118496302

DOWNLOAD EBOOK

Details the water research applications of nanotechnology in various areas including environmental science, remediation, membranes, nanomaterials, and water treatment At the nano size, materials often take on unique and sometimes unexpected properties that result in them being ‘tuned’ to build faster, lighter, stronger, and more efficient devices and systems, as well as creating new classes of materials. In water research, nanotechnology is applied to develop more cost-effective and high-performance water treatment systems, as well as to provide instant and continuous ways to monitor water quality. This volume presents an array of cutting-edge nanotechnology research in water applications including treatment, remediation, sensing, and pollution prevention. Nanotechnology applications for waste water research have significant impact in maintaining the long-term quality, availability, and viability of water. Regardless of the origin, such as municipal or industrial waste water, its remediation utilizing nanotechnology can not only be recycled and desalinized, but it can simultaneously detect biological and chemical contamination. Application of Nanotechnology in Water Research describes a broad area of nanotechnology and water research where membrane processes (nanofiltration, ultrafiltration, reverse osmosis, and nanoreactive membranes) are considered key components of advanced water purification and desalination technologies that remove, reduce, or neutralize water contaminants that threaten human health and/or ecosystem productivity and integrity. Various nanoparticles and nanomaterials that could be used in water remediation (zeolites, carbon nanotubes, self-assembled monolayer on mesoporous supports, biopolymers, single-enzyme nanoparticles, zero-valent iron nanoparticles, bimetallic iron nanoparticles, and nanoscale semiconductor photocatalysts) are discussed. The book also covers water-borne infectious diseases as well as water-borne pathogens, microbes, and toxicity approach.


Semiconductor Electrochemistry

Semiconductor Electrochemistry

Author: Rüdiger Memming

Publisher: John Wiley & Sons

Published: 2015-06-22

Total Pages: 487

ISBN-13: 3527312811

DOWNLOAD EBOOK

Providing both an introduction and an up-to-date survey of the entire field, this text captivates the reader with its clear style and inspiring, yet solid presentation. The significantly expanded second edition of this milestone work is supplemented by a completely new chapter on the hot topic of nanoparticles and includes the latest insights into the deposition of dye layers on semiconductor electrodes. In his monograph, the acknowledged expert Professor Memming primarily addresses physical and electrochemists, but materials scientists, physicists, and engineers dealing with semiconductor technology and its applications will also benefit greatly from the contents.


Heterogeneous Photocatalysis

Heterogeneous Photocatalysis

Author: M. Schiavello

Publisher:

Published: 1997-10-09

Total Pages: 218

ISBN-13:

DOWNLOAD EBOOK

Photocatalysis is a reaction which is accelerated by light while a heterogeneous reaction consists of two phases ( a solid and a liquid for example). Heterogeneous Photocatalysis is a fast developing science which to date has not been fully detailed in a monograph. This title discusses the basic principles of heterogeneous photocatalysis and describes the bulk and surface properties of semiconductors. Applications of various types of photoreactions are described and the problems related to the modeling and design of photoreactors are covered.


Heterogeneous Photocatalysis

Heterogeneous Photocatalysis

Author: Mario J. Muñoz-Batista

Publisher: Springer Nature

Published: 2020-07-01

Total Pages: 301

ISBN-13: 3030494926

DOWNLOAD EBOOK

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapter "Mechanochemical Forces as a Synthetic Tool for Zero and One-Dimensional Titanium Oxide-Based Nano-photocatalysts" is available open access under a CC BY 4.0 License via link.springer.com.