In recent years, the sustainability and safety of perishable foods has become a major consumer concern, and refrigeration systems play an important role in the processing, distribution, and storage of such foods. To improve the efficiency of food preservation technologies, it is necessary to explore new technological and scientific advances both in materials and processes. The Handbook of Research on Advances and Applications in Refrigeration Systems and Technologies gathers state-of-the-art research related to thermal performance and energy-efficiency. Covering a diverse array of subjects—from the challenges of surface-area frost-formation on evaporators to the carbon footprint of refrigerant chemicals—this publication provides a broad insight into the optimization of cold-supply chains and serves as an essential reference text for undergraduate students, practicing engineers, researchers, educators, and policymakers.
Heat transfer enhancement has seen rapid development and widespread use in both conventional and emerging technologies. Improvement of heat transfer fluids requires a balance between experimental and numerical work in nanofluids and new refrigerants. Recognizing the uncertainties in development of new heat transfer fluids, Advances in New Heat Transfer Fluids: From Numerical to Experimental Techniques contains both theoretical and practical coverage.
The definitive text/reference for students, researchers and practicing engineers This book provides comprehensive coverage on refrigeration systems and applications, ranging from the fundamental principles of thermodynamics to food cooling applications for a wide range of sectoral utilizations. Energy and exergy analyses as well as performance assessments through energy and exergy efficiencies and energetic and exergetic coefficients of performance are explored, and numerous analysis techniques, models, correlations and procedures are introduced with examples and case studies. There are specific sections allocated to environmental impact assessment and sustainable development studies. Also featured are discussions of important recent developments in the field, including those stemming from the author’s pioneering research. Refrigeration is a uniquely positioned multi-disciplinary field encompassing mechanical, chemical, industrial and food engineering, as well as chemistry. Its wide-ranging applications mean that the industry plays a key role in national and international economies. And it continues to be an area of active research, much of it focusing on making the technology as environmentally friendly and sustainable as possible without compromising cost efficiency and effectiveness. This substantially updated and revised edition of the classic text/reference now features two new chapters devoted to renewable-energy-based integrated refrigeration systems and environmental impact/sustainability assessment. All examples and chapter-end problems have been updated as have conversion factors and the thermophysical properties of an array of materials. Provides a solid foundation in the fundamental principles and the practical applications of refrigeration technologies Examines fundamental aspects of thermodynamics, refrigerants, as well as energy and exergy analyses and energy and exergy based performance assessment criteria and approaches Introduces environmental impact assessment methods and sustainability evaluation of refrigeration systems and applications Covers basic and advanced (and hence integrated) refrigeration cycles and systems, as well as a range of novel applications Discusses crucial industrial, technical and operational problems, as well as new performance improvement techniques and tools for better design and analysis Features clear explanations, numerous chapter-end problems and worked-out examples Refrigeration Systems and Applications, Third Edition is an indispensable working resource for researchers and practitioners in the areas of Refrigeration and Air Conditioning. It is also an ideal textbook for graduate and senior undergraduate students in mechanical, chemical, biochemical, industrial and food engineering disciplines.
A timely and comprehensive introduction to CO2 heat pump theory and usage A comprehensive introduction of CO2 application in heat pump, authored by leading scientists in the field CO2 is a hot topic due to concerns over global warming and the 'greenhouse effect'. Its disposal and application has attracted considerable research and governmental interest Explores the basic theories, devices, systems and cycles and real application designs for varying applications, ensuring comprehensive coverage of a current topic CO2 heat transfer has everyday applications including water heaters, air-conditioning systems, residential and commercial heating systems, and cooling systems
The development of a sustainable agricultural system is a critical concern for any nation in modern society. By implementing proper supply chain processes, available natural resources and food can be better utilized. Agri-Food Supply Chain Management: Breakthroughs in Research and Practice is a compendium of emerging perspectives on the development of an effective agricultural value chain and the optimization of supply chain management within the agriculture and food sectors. Highlighting theoretical frameworks, real-world applications, and future outlooks, this book is a primary reference source for professionals, students, practitioners, and managers actively involved in agricultural development.
Encompassing both practical applications and recent research developments, this book takes the reader from fundamental physics, through cutting-edge new designs of ejectors for refrigeration. The authors’ unique vision marries successful design, system optimization, and operation experience with insights on the application of cutting-edge Computational Fluid Dynamics (CFD) models. This robust treatment leads the way forward in developing improved ejector technologies. The book covers ejectors used for heat powered refrigeration and for expansion work recovery in compression refrigerators, with special emphasis on two-phase flows of “natural” fluids within the ejector, i.e. steam and carbon dioxide. It features worked examples, detailed research results, and analysis tools.
Fishing vessels can be equipped with energy efficient refrigeration technology applying natural working fluids. Ammonia refrigeration systems have been the first choice, but CO2 units have also become increasingly common in the maritime sector in the last few years. When retrofitting or implementing CO2 refrigeration plants, less space on board is required and such units allow good service and maintenance. Nowadays, cruise ship owners prefer CO2 units for the provision refrigeration plants.Ship owners, responsible for the health and safety of the crew and passengers, must carefully evaluate the usage of flammable low GWP working fluids, due to a high risk that toxic decomposition products are formed, even without the presence of an open flame. Suggestions for further work include a Nordic Technology Hub for global marine refrigeration R&D and development support for key components.