Inverse Problems in the Theory of Small Oscillations

Inverse Problems in the Theory of Small Oscillations

Author: Vladimir Marchenko

Publisher: American Mathematical Soc.

Published: 2018-12-12

Total Pages: 170

ISBN-13: 1470448904

DOWNLOAD EBOOK

Inverse problems of spectral analysis deal with the reconstruction of operators of the specified form in Hilbert or Banach spaces from certain of their spectral characteristics. An interest in spectral problems was initially inspired by quantum mechanics. The main inverse spectral problems have been solved already for Schrödinger operators and for their finite-difference analogues, Jacobi matrices. This book treats inverse problems in the theory of small oscillations of systems with finitely many degrees of freedom, which requires finding the potential energy of a system from the observations of its oscillations. Since oscillations are small, the potential energy is given by a positive definite quadratic form whose matrix is called the matrix of potential energy. Hence, the problem is to find a matrix belonging to the class of all positive definite matrices. This is the main difference between inverse problems studied in this book and the inverse problems for discrete analogues of the Schrödinger operators, where only the class of tridiagonal Hermitian matrices are considered.


An Introduction To Inverse Problems In Physics

An Introduction To Inverse Problems In Physics

Author: Mohsen Razavy

Publisher: World Scientific

Published: 2020-05-21

Total Pages: 387

ISBN-13: 9811221685

DOWNLOAD EBOOK

This book is a compilation of different methods of formulating and solving inverse problems in physics from classical mechanics to the potentials and nucleus-nucleus scattering. Mathematical proofs are omitted since excellent monographs already exist dealing with these aspects of the inverse problems.The emphasis here is on finding numerical solutions to complicated equations. A detailed discussion is presented on the use of continued fractional expansion, its power and its limitation as applied to various physical problems. In particular, the inverse problem for discrete form of the wave equation is given a detailed exposition and applied to atomic and nuclear scattering, in the latter for elastic as well as inelastic collision. This technique is also used for inverse problem of geomagnetic induction and one-dimensional electrical conductivity. Among other topics covered are the inverse problem of torsional vibration, and also a chapter on the determination of the motion of a body with reflecting surface from its reflection coefficient.


Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy's 60th Birthday

Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy's 60th Birthday

Author: Helge Holden

Publisher: American Mathematical Soc.

Published: 2013-07-08

Total Pages: 409

ISBN-13: 0821875744

DOWNLOAD EBOOK

This volume contains twenty contributions in the area of mathematical physics where Fritz Gesztesy made profound contributions. There are three survey papers in spectral theory, differential equations, and mathematical physics, which highlight, in particu


Homogenization Theory for Multiscale Problems

Homogenization Theory for Multiscale Problems

Author: Xavier Blanc

Publisher: Springer Nature

Published: 2023-04-29

Total Pages: 469

ISBN-13: 3031218337

DOWNLOAD EBOOK

The book provides a pedagogic and comprehensive introduction to homogenization theory with a special focus on problems set for non-periodic media. The presentation encompasses both deterministic and probabilistic settings. It also mixes the most abstract aspects with some more practical aspects regarding the numerical approaches necessary to simulate such multiscale problems. Based on lecture courses of the authors, the book is suitable for graduate students of mathematics and engineering.


Methods of Inverse Problems in Physics

Methods of Inverse Problems in Physics

Author: Dilip N. Ghosh Roy

Publisher: CRC Press

Published: 1991-03-14

Total Pages: 506

ISBN-13: 9780849362583

DOWNLOAD EBOOK

This interesting volume focuses on the second of the two broad categories into which problems of physical sciences fall-direct (or forward) and inverse (or backward) problems. It emphasizes one-dimensional problems because of their mathematical clarity. The unique feature of the monograph is its rigorous presentation of inverse problems (from quantum scattering to vibrational systems), transmission lines, and imaging sciences in a single volume. It includes exhaustive discussions on spectral function, inverse scattering integral equations of Gel'fand-Levitan and Marcenko, Povzner-Levitan and Levin transforms, Møller wave operators and Krein's functionals, S-matrix and scattering data, and inverse scattering transform for solving nonlinear evolution equations via inverse solving of a linear, isospectral Schrodinger equation and multisoliton solutions of the K-dV equation, which are of special interest to quantum physicists and mathematicians. The book also gives an exhaustive account of inverse problems in discrete systems, including inverting a Jacobi and a Toeplitz matrix, which can be applied to geophysics, electrical engineering, applied mechanics, and mathematics. A rigorous inverse problem for a continuous transmission line developed by Brown and Wilcox is included. The book concludes with inverse problems in integral geometry, specifically Radon's transform and its inversion, which is of particular interest to imaging scientists. This fascinating volume will interest anyone involved with quantum scattering, theoretical physics, linear and nonlinear optics, geosciences, mechanical, biomedical, and electrical engineering, and imaging research.


Computational Methods for Inverse Problems

Computational Methods for Inverse Problems

Author: Curtis R. Vogel

Publisher: SIAM

Published: 2002-01-01

Total Pages: 195

ISBN-13: 0898717574

DOWNLOAD EBOOK

Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.


Direct and Inverse Finite-Dimensional Spectral Problems on Graphs

Direct and Inverse Finite-Dimensional Spectral Problems on Graphs

Author: Manfred Möller

Publisher: Springer Nature

Published: 2020-10-30

Total Pages: 349

ISBN-13: 3030604845

DOWNLOAD EBOOK

Considering that the motion of strings with finitely many masses on them is described by difference equations, this book presents the spectral theory of such problems on finite graphs of strings. The direct problem of finding the eigenvalues as well as the inverse problem of finding strings with a prescribed spectrum are considered. This monograph gives a comprehensive and self-contained account on the subject, thereby also generalizing known results. The interplay between the representation of rational functions and their zeros and poles is at the center of the methods used. The book also unravels connections between finite dimensional and infinite dimensional spectral problems on graphs, and between self-adjoint and non-self-adjoint finite-dimensional problems. This book is addressed to researchers in spectral theory of differential and difference equations as well as physicists and engineers who may apply the presented results and methods to their research.


Theory of Moduli

Theory of Moduli

Author: Edoardo Sernesi

Publisher: Springer

Published: 2006-11-14

Total Pages: 243

ISBN-13: 3540459200

DOWNLOAD EBOOK

The contributions making up this volume are expanded versions of the courses given at the C.I.M.E. Summer School on the Theory of Moduli.


Inverse Problems of Mathematical Physics

Inverse Problems of Mathematical Physics

Author: Mikhail M. Lavrent'ev

Publisher: Walter de Gruyter

Published: 2012-05-07

Total Pages: 288

ISBN-13: 3110915529

DOWNLOAD EBOOK

This monograph deals with the theory of inverse problems of mathematical physics and applications of such problems. Besides it considers applications and numerical methods of solving the problems under study. Descriptions of particular numerical experiments are also included.