Intuitive Combinatorial Topology

Intuitive Combinatorial Topology

Author: V.G. Boltyanskii

Publisher: Springer Science & Business Media

Published: 2001-03-30

Total Pages: 160

ISBN-13: 9780387951140

DOWNLOAD EBOOK

Topology is a relatively young and very important branch of mathematics, which studies the properties of objects that are preserved through deformations, twistings, and stretchings. This book deals with the topology of curves and surfaces as well as with the fundamental concepts of homotopy and homology, and does this in a lively and well-motivated way. This book is well suited for readers who are interested in finding out what topology is all about.


Intuitive Combinatorial Topology

Intuitive Combinatorial Topology

Author: V.G. Boltyanskii

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 153

ISBN-13: 1475756046

DOWNLOAD EBOOK

Topology is a relatively young and very important branch of mathematics, which studies the properties of objects that are preserved through deformations, twistings, and stretchings. This book deals with the topology of curves and surfaces as well as with the fundamental concepts of homotopy and homology, and does this in a lively and well-motivated way. This book is well suited for readers who are interested in finding out what topology is all about.


A Combinatorial Introduction to Topology

A Combinatorial Introduction to Topology

Author: Michael Henle

Publisher: Courier Corporation

Published: 1994-01-01

Total Pages: 340

ISBN-13: 9780486679662

DOWNLOAD EBOOK

Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.


Distributed Computing Through Combinatorial Topology

Distributed Computing Through Combinatorial Topology

Author: Maurice Herlihy

Publisher: Newnes

Published: 2013-11-30

Total Pages: 335

ISBN-13: 0124047289

DOWNLOAD EBOOK

Distributed Computing Through Combinatorial Topology describes techniques for analyzing distributed algorithms based on award winning combinatorial topology research. The authors present a solid theoretical foundation relevant to many real systems reliant on parallelism with unpredictable delays, such as multicore microprocessors, wireless networks, distributed systems, and Internet protocols. Today, a new student or researcher must assemble a collection of scattered conference publications, which are typically terse and commonly use different notations and terminologies. This book provides a self-contained explanation of the mathematics to readers with computer science backgrounds, as well as explaining computer science concepts to readers with backgrounds in applied mathematics. The first section presents mathematical notions and models, including message passing and shared-memory systems, failures, and timing models. The next section presents core concepts in two chapters each: first, proving a simple result that lends itself to examples and pictures that will build up readers' intuition; then generalizing the concept to prove a more sophisticated result. The overall result weaves together and develops the basic concepts of the field, presenting them in a gradual and intuitively appealing way. The book's final section discusses advanced topics typically found in a graduate-level course for those who wish to explore further. - Named a 2013 Notable Computer Book for Computing Methodologies by Computing Reviews - Gathers knowledge otherwise spread across research and conference papers using consistent notations and a standard approach to facilitate understanding - Presents unique insights applicable to multiple computing fields, including multicore microprocessors, wireless networks, distributed systems, and Internet protocols - Synthesizes and distills material into a simple, unified presentation with examples, illustrations, and exercises


Classical Topology and Combinatorial Group Theory

Classical Topology and Combinatorial Group Theory

Author: John Stillwell

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 344

ISBN-13: 1461243726

DOWNLOAD EBOOK

In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec tions to other parts of mathematics which make topology an important as well as a beautiful subject.


Algebraic Topology: An Intuitive Approach

Algebraic Topology: An Intuitive Approach

Author: Hajime Satō

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 144

ISBN-13: 9780821810460

DOWNLOAD EBOOK

The single most difficult thing one faces when one begins to learn a new branch of mathematics is to get a feel for the mathematical sense of the subject. The purpose of this book is to help the aspiring reader acquire this essential common sense about algebraic topology in a short period of time. To this end, Sato leads the reader through simple but meaningful examples in concrete terms. Moreover, results are not discussed in their greatest possible generality, but in terms of the simplest and most essential cases. In response to suggestions from readers of the original edition of this book, Sato has added an appendix of useful definitions and results on sets, general topology, groups and such. He has also provided references. Topics covered include fundamental notions such as homeomorphisms, homotopy equivalence, fundamental groups and higher homotopy groups, homology and cohomology, fiber bundles, spectral sequences and characteristic classes. Objects and examples considered in the text include the torus, the Möbius strip, the Klein bottle, closed surfaces, cell complexes and vector bundles.


Combinatorial Algebraic Topology

Combinatorial Algebraic Topology

Author: Dimitry Kozlov

Publisher: Springer Science & Business Media

Published: 2008-01-08

Total Pages: 416

ISBN-13: 9783540730514

DOWNLOAD EBOOK

This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.


A Course in Topological Combinatorics

A Course in Topological Combinatorics

Author: Mark de Longueville

Publisher: Springer Science & Business Media

Published: 2013

Total Pages: 246

ISBN-13: 1441979093

DOWNLOAD EBOOK

This undergraduate textbook in topological combinatorics covers such topics as fair division, graph coloring problems, evasiveness of graph properties, and embedding problems from discrete geometry. Includes many figures and exercises.


Counterexamples in Topology

Counterexamples in Topology

Author: Lynn Arthur Steen

Publisher: Courier Corporation

Published: 2013-04-22

Total Pages: 274

ISBN-13: 0486319296

DOWNLOAD EBOOK

Over 140 examples, preceded by a succinct exposition of general topology and basic terminology. Each example treated as a whole. Numerous problems and exercises correlated with examples. 1978 edition. Bibliography.