This book provides an introduction to the fundamental and applied aspects of sonochemistry, discussing a number of basic concepts in sonochemistry, such as how ultrasonic waves interact with gas bubbles in liquids to generate cavitation, and how the high temperatures generated within cavitation bubbles could be estimated. It explains how redox radicals are produced and how to make use of both the physical and chemical forces generated during cavitation for various applications. Intended for academic researchers, industry professionals as well as undergraduate and graduate students, especially those starting on a new research topic or those new to the field, it provides a clear understanding of the concepts and methodologies involved in ultrasonic and sonochemistry.
This book provides an introduction to the fundamental and applied aspects of sonochemistry, discussing a number of basic concepts in sonochemistry, such as how ultrasonic waves interact with gas bubbles in liquids to generate cavitation, and how the high temperatures generated within cavitation bubbles could be estimated. It explains how redox radicals are produced and how to make use of both the physical and chemical forces generated during cavitation for various applications. Intended for academic researchers, industry professionals as well as undergraduate and graduate students, especially those starting on a new research topic or those new to the field, it provides a clear understanding of the concepts and methodologies involved in ultrasonic and sonochemistry.
Ultrasonic irradiation and the associated sonochemical and sonophysical effects are complementary techniques for driving more efficient chemical reactions and yields. Sonochemistry-the chemical effects and applications of ultrasonic waves-and sustainable (green) chemistry both aim to use less hazardous chemicals and solvents, reduce energy consumpt
The use of power ultrasound to promote industrial electrochemical processes, or sonoelectrochemistry, was first discovered over 70 years ago, but recently there has been a revived interest in this field. Sonoelectrochemistry is a technology that is safe, cost-effective, environmentally friendly and energy efficient compared to other conventional methods. The book contains chapters on the following topics, contributed from leading researchers in academia and industry: Use of electrochemistry as a tool to investigate Cavitation Bubble Dynamics Sonoelectroanalysis Sonoelectrochemistry in environmental applications Organic Sonoelectrosynthesis Sonoelectrodeposition Influence of ultrasound on corrosion kinetics and its application to corrosion tests Sonoelectropolymerisation Sonoelectrochemical production of nanomaterials Sonochemistry and Sonoelectrochemistry in hydrogen and fuel cell technologies
Power ultrasound has been used for many years in two specific industrial areas: cleaning and plastic welding. Over the last ten years an increasing interest has been shown in its potential for use over a much wider range of chemistry and processing which has been grouped together under the general title of sonochemistry. Most of these uses depend on the generation of acoustic cavitation in liquid media but this text, while underlining the importance of the physics and mathematics of cavitation, mainly concentrates on applications of the technology. After an introduction to the topic and some historical background to the uses of power ultrasound the general principles of acoustic cavitation are explored including some background physics, bubble dynamics and factors which influence cavitation. The remainder of the book incorporates a series of applications of sonochemistry which illustrate the types of physical and chemical effects of ultrasonically induced cavitation which will interest chemists and engineers alike. Amongst the major topics included are chemical synthesis, environmental protection and remediation of water, sewage and soils, polymer synthesis and processing, electrochemistry including both analytical and synthetic aspects and plating. The final chapter reviews the range of ultrasonic equipment available in the laboratory and the progress made towards the scale-up of sonochemistry. The level is introductory to semi-advanced and no topic has been taken to a particularly specialist level since it is intended that this should be of general interest to readers with a scientific background.
This book explores the most pertinent aspects and advancements in sonochemistry, dedicating nine chapters to fundamentals, synthesis methods, and applications. Covering ultrasound as the primary energy source, the initial chapters cover the interaction of ultrasound waves with matter and its diverse applications across various fields. The text further delves into the synthesis of nanomaterials and nanocomposites under varying reaction conditions. Finally, the book examines specific topics, including the application of sonochemistry in wastewater treatment, catalysts, sensors, meat processing, and food packaging. These insights indicate that sonochemistry is an emerging science with promising applications extending beyond the confines of the laboratory.
Part I: Fundamentals of ultrasound This part will cover the main basic principles of ultrasound generation and propagation and those phenomena related to low and high intensity ultrasound applications. The mechanisms involved in food analysis and process monitoring and in food process intensification will be shown. Part II: Low intensity ultrasound applications Low intensity ultrasound applications have been used for non-destructive food analysis as well as for process monitoring. Ultrasonic techniques, based on velocity, attenuation or frequency spectrum analysis, may be considered as rapid, simple, portable and suitable for on-line measurements. Although industrial applications of low-intensity ultrasound, such as meat carcass evaluation, have been used in the food industry for decades, this section will cover the most novel applications, which could be considered as highly relevant for future application in the food industry. Chapters addressing this issue will be divided into three subsections: (1) food control, (2) process monitoring, (3) new trends. Part III: High intensity ultrasound applications High intensity ultrasound application constitutes a way to intensify many food processes. However, the efficient generation and application of ultrasound is essential to achieving a successful effect. This part of the book will begin with a chapter dealing with the importance of the design of efficient ultrasonic application systems. The medium is essential to achieve efficient transmission, and for that reason the particular challenges of applying ultrasound in different media will be addressed. The next part of this section constitutes an up-to-date vision of the use of high intensity ultrasound in food processes. The chapters will be divided into four sections, according to the medium in which the ultrasound vibration is transmitted from the transducers to the product being treated. Thus, solid, liquid, supercritical and gas media have been used for ultrasound propagation. Previous books addressing ultrasonic applications in food processing have been based on the process itself, so chapters have been divided in mass and heat transport, microbial inactivation, etc. This new book will propose a revolutionary overview of ultrasonic applications based on (in the authors’ opinion) the most relevant factor affecting the efficiency of ultrasound applications: the medium in which ultrasound is propagated. Depending on the medium, ultrasonic phenomena can be completely different, but it also affects the complexity of the ultrasonic generation, propagation and application. In addition, the effect of high intensity ultrasound on major components of food, such as proteins, carbohydrates and lipids will be also covered, since this type of information has not been deeply studied in previous books. Other aspects related to the challenges of food industry to incorporate ultrasound devices will be also considered. This point is also very important since, in the last few years, researchers have made huge efforts to integrate fully automated and efficient ultrasound systems to the food production lines but, in some cases, it was not satisfactory. In this sense, it is necessary to identify and review the main related problems to efficiently produce and transmit ultrasound, scale-up, reduce cost, save energy and guarantee the production of safe, healthy and high added value foods.
An overview of the current state of nanotechnology-based devices with applications in environmental science, focusing on nanomaterials and polymer nanocomposites. The handbook pays special attention to those nanotechnology-based approaches that promise easier, faster and cheaper processes in environmental monitoring and remediation. Furthermore, it presents up-to-date information on the economics, toxicity and regulations related to nanotechnology in detail. The book closes with a look at the role of nanotechnology for a green and sustainable future. With its coverage of existing and soon-to-be-realized devices this is an indispensable reference for both academic and corporate R&D.
With the public enhanced awareness towards eco-preservation, eco-safety and health concerns, environmentally benign, nontoxic and sustainable bioresource materials produced mainly from non-food crops have revolutionized all industrial sectors particularly textile industry. In recent years, textile industries in developed countries are getting increasing interest in global interest due to the varied and changing world market conditions in terms of price, durability and fiber mixtures as well as design, colors, weight, ease of handling and product safety. The increasing environmental and health concerns owing to the use of large quantities of water and hazardous chemicals in conventional textile finishing processes lead to the design and development of new dyeing strategies and technologies. Effluents produced from these textiles wet processing industries are very diverse in chemical composition, ranging from inorganic finishing agents, surfactants, chlorine compounds, salts, total phosphate to polymers and organic products. This aspect forced western countries to exploit their high technical skills in the advancements of textile materials for high quality technical performances, and development of cleaner production technologies for cost effective and value-added textile materials. Therefore, vast and effective research investigations have been undertaken all over the world to minimize the negative environmental impact of synthetic chemical agents through the sustainable harvest of eco-friendly bioresource materials. The book will discuss following research developments in academic and industry: Improvement in dye extraction and its applications Impact of textile dyeing on environment Textile finishing by natural and ecofriendly means Natural dyes as environmental-friendly bioresource products Textile effluent remediation via physical, chemical and biological processes.