Introduction to the Geometry of Complex Numbers

Introduction to the Geometry of Complex Numbers

Author: Roland Deaux

Publisher: Courier Corporation

Published: 2013-01-23

Total Pages: 211

ISBN-13: 0486158047

DOWNLOAD EBOOK

Geared toward readers unfamiliar with complex numbers, this text explains how to solve problems that frequently arise in the applied sciences and emphasizes constructions related to algebraic operations. 1956 edition.


Geometry of Complex Numbers

Geometry of Complex Numbers

Author: Hans Schwerdtfeger

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 228

ISBN-13: 0486135861

DOWNLOAD EBOOK

Illuminating, widely praised book on analytic geometry of circles, the Moebius transformation, and 2-dimensional non-Euclidean geometries.


Complex Numbers and Geometry

Complex Numbers and Geometry

Author: Liang-shin Hahn

Publisher: American Mathematical Soc.

Published: 2019-12-26

Total Pages: 204

ISBN-13: 1470451824

DOWNLOAD EBOOK

The purpose of this book is to demonstrate that complex numbers and geometry can be blended together beautifully. This results in easy proofs and natural generalizations of many theorems in plane geometry, such as the Napoleon theorem, the Ptolemy-Euler theorem, the Simson theorem, and the Morley theorem. The book is self-contained—no background in complex numbers is assumed—and can be covered at a leisurely pace in a one-semester course. Many of the chapters can be read independently. Over 100 exercises are included. The book would be suitable as a text for a geometry course, or for a problem solving seminar, or as enrichment for the student who wants to know more.


An Introduction to Complex Analysis and Geometry

An Introduction to Complex Analysis and Geometry

Author: John P. D'Angelo

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 177

ISBN-13: 0821852744

DOWNLOAD EBOOK

Provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The first four chapters provide an introduction to complex analysis with many elementary and unusual applications. Chapters 5 to 7 develop the Cauchy theory and include some striking applications to calculus. Chapter 8 glimpses several appealing topics, simultaneously unifying the book and opening the door to further study.


Algebraic Geometry over the Complex Numbers

Algebraic Geometry over the Complex Numbers

Author: Donu Arapura

Publisher: Springer Science & Business Media

Published: 2012-02-15

Total Pages: 326

ISBN-13: 1461418097

DOWNLOAD EBOOK

This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.


Complex Numbers from A to ...Z

Complex Numbers from A to ...Z

Author: Titu Andreescu

Publisher: Springer Science & Business Media

Published: 2007-10-08

Total Pages: 336

ISBN-13: 0817644490

DOWNLOAD EBOOK

* Learn how complex numbers may be used to solve algebraic equations, as well as their geometric interpretation * Theoretical aspects are augmented with rich exercises and problems at various levels of difficulty * A special feature is a selection of outstanding Olympiad problems solved by employing the methods presented * May serve as an engaging supplemental text for an introductory undergrad course on complex numbers or number theory


Complex Geometry

Complex Geometry

Author: Daniel Huybrechts

Publisher: Springer Science & Business Media

Published: 2005

Total Pages: 336

ISBN-13: 9783540212904

DOWNLOAD EBOOK

Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)


Introduction to Projective Geometry

Introduction to Projective Geometry

Author: C. R. Wylie

Publisher: Courier Corporation

Published: 2011-09-12

Total Pages: 578

ISBN-13: 0486141705

DOWNLOAD EBOOK

This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include worked-through examples, introductions and summaries for each topic, and numerous theorems, proofs, and exercises that reinforce each chapter's precepts. Two helpful indexes conclude the text, along with answers to all odd-numbered exercises. In addition to its value to undergraduate students of mathematics, computer science, and secondary mathematics education, this volume provides an excellent reference for computer science professionals.


Visual Complex Analysis

Visual Complex Analysis

Author: Tristan Needham

Publisher: Oxford University Press

Published: 1997

Total Pages: 620

ISBN-13: 9780198534464

DOWNLOAD EBOOK

This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.


Introduction to Complex Analytic Geometry

Introduction to Complex Analytic Geometry

Author: Stanislaw Lojasiewicz

Publisher: Birkhäuser

Published: 2013-03-09

Total Pages: 535

ISBN-13: 3034876173

DOWNLOAD EBOOK

facts. An elementary acquaintance with topology, algebra, and analysis (in cluding the notion of a manifold) is sufficient as far as the understanding of this book is concerned. All the necessary properties and theorems have been gathered in the preliminary chapters -either with proofs or with references to standard and elementary textbooks. The first chapter of the book is devoted to a study of the rings Oa of holomorphic functions. The notions of analytic sets and germs are introduced in the second chapter. Its aim is to present elementary properties of these objects, also in connection with ideals of the rings Oa. The case of principal germs (§5) and one-dimensional germs (Puiseux theorem, §6) are treated separately. The main step towards understanding of the local structure of analytic sets is Ruckert's descriptive lemma proved in Chapter III. Among its conse quences is the important Hilbert Nullstellensatz (§4). In the fourth chapter, a study of local structure (normal triples, § 1) is followed by an exposition of the basic properties of analytic sets. The latter includes theorems on the set of singular points, irreducibility, and decom position into irreducible branches (§2). The role played by the ring 0 A of an analytic germ is shown (§4). Then, the Remmert-Stein theorem on re movable singularities is proved (§6). The last part of the chapter deals with analytically constructible sets (§7).