Introduction to Statistical Quality Control

Introduction to Statistical Quality Control

Author: Douglas C. Montgomery

Publisher: John Wiley & Sons

Published: 2019-12-30

Total Pages: 773

ISBN-13: 1119657113

DOWNLOAD EBOOK

"Once solely the domain of engineers, quality control has become a vital business operation used to increase productivity and secure competitive advantage. Introduction to Statistical Quality Control offers a detailed presentation of the modern statistical methods for quality control and improvement. Thorough coverage of statistical process control (SPC) demonstrates the efficacy of statistically-oriented experiments in the context of process characterization, optimization, and acceptance sampling, while examination of the implementation process provides context to real-world applications. Emphasis on Six Sigma DMAIC (Define, Measure, Analyze, Improve and Control) provides a strategic problem-solving framework that can be applied across a variety of disciplines.Adopting a balanced approach to traditional and modern methods, this text includes coverage of SQC techniques in both industrial and non-manufacturing settings, providing fundamental knowledge to students of engineering, statistics, business, and management sciences.A strong pedagogical toolset, including multiple practice problems, real-world data sets and examples, provides students with a solid base of conceptual and practical knowledge."--


Probability, Random Variables, and Random Processes

Probability, Random Variables, and Random Processes

Author: John J. Shynk

Publisher: John Wiley & Sons

Published: 2012-10-15

Total Pages: 850

ISBN-13: 1118393953

DOWNLOAD EBOOK

Probability, Random Variables, and Random Processes is a comprehensive textbook on probability theory for engineers that provides a more rigorous mathematical framework than is usually encountered in undergraduate courses. It is intended for first-year graduate students who have some familiarity with probability and random variables, though not necessarily of random processes and systems that operate on random signals. It is also appropriate for advanced undergraduate students who have a strong mathematical background. The book has the following features: Several appendices include related material on integration, important inequalities and identities, frequency-domain transforms, and linear algebra. These topics have been included so that the book is relatively self-contained. One appendix contains an extensive summary of 33 random variables and their properties such as moments, characteristic functions, and entropy. Unlike most books on probability, numerous figures have been included to clarify and expand upon important points. Over 600 illustrations and MATLAB plots have been designed to reinforce the material and illustrate the various characterizations and properties of random quantities. Sufficient statistics are covered in detail, as is their connection to parameter estimation techniques. These include classical Bayesian estimation and several optimality criteria: mean-square error, mean-absolute error, maximum likelihood, method of moments, and least squares. The last four chapters provide an introduction to several topics usually studied in subsequent engineering courses: communication systems and information theory; optimal filtering (Wiener and Kalman); adaptive filtering (FIR and IIR); and antenna beamforming, channel equalization, and direction finding. This material is available electronically at the companion website. Probability, Random Variables, and Random Processes is the only textbook on probability for engineers that includes relevant background material, provides extensive summaries of key results, and extends various statistical techniques to a range of applications in signal processing.


An Introduction to Statistical Signal Processing with Applications

An Introduction to Statistical Signal Processing with Applications

Author: Mandyam Dhati Srinath

Publisher: John Wiley & Sons

Published: 1979

Total Pages: 522

ISBN-13:

DOWNLOAD EBOOK

In An Introduction to Statistical Signal Processing with Applications, these three author/educators cover basic techniques in the processing of stochastic signals and illustrate their use in a variety of specific applications.


Linear Algebra for Signal Processing

Linear Algebra for Signal Processing

Author: Adam Bojanczyk

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 193

ISBN-13: 1461242282

DOWNLOAD EBOOK

Signal processing applications have burgeoned in the past decade. During the same time, signal processing techniques have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This trend will continue as many new signal processing applications are opening up in consumer products and communications systems. In particular, signal processing has been making increasingly sophisticated use of linear algebra on both theoretical and algorithmic fronts. This volume gives particular emphasis to exposing broader contexts of the signal processing problems so that the impact of algorithms and hardware can be better understood; it brings together the writings of signal processing engineers, computer engineers, and applied linear algebraists in an exchange of problems, theories, and techniques. This volume will be of interest to both applied mathematicians and engineers.


An Introduction to Statistical Communication Theory

An Introduction to Statistical Communication Theory

Author: David Middleton

Publisher: Wiley-IEEE Press

Published: 1996-05-08

Total Pages: 1192

ISBN-13:

DOWNLOAD EBOOK

This IEEE Classic Reissue provides at an advanced level, a uniquely fundamental exposition of the applications of Statistical Communication Theory to a vast spectrum of important physical problems. Included are general analysis of signal detection, estimation, measurement, and related topics involving information transfer. Using the statistical Bayesian viewpoint, renowned author David Middleton employs statistical decision theory specifically tailored for the general tasks of signal processing. Dr. Middleton also provides a special focus on physical modeling of the canonical channel with real-world examples relating to radar, sonar, and general telecommunications. This book offers a detailed treatment and an array of problems and results spanning an exceptionally broad range of technical subjects in the communications field. Complete with special functions, integrals, solutions of integral equations, and an extensive, updated bibliography by chapter, An Introduction to Statistical Communication Theory is a seminal reference, particularly for anyone working in the field of communications, as well as in other areas of statistical physics. (Originally published in 1960.)


Nonlinear Signal Processing

Nonlinear Signal Processing

Author: Gonzalo R. Arce

Publisher: John Wiley & Sons

Published: 2005-01-03

Total Pages: 483

ISBN-13: 0471691844

DOWNLOAD EBOOK

Nonlinear Signal Processing: A Statistical Approach focuses on unifying the study of a broad and important class of nonlinear signal processing algorithms which emerge from statistical estimation principles, and where the underlying signals are non-Gaussian, rather than Gaussian, processes. Notably, by concentrating on just two non-Gaussian models, a large set of tools is developed that encompass a large portion of the nonlinear signal processing tools proposed in the literature over the past several decades. Key features include: * Numerous problems at the end of each chapter to aid development and understanding * Examples and case studies provided throughout the book in a wide range of applications bring the text to life and place the theory into context * A set of 60+ MATLAB software m-files allowing the reader to quickly design and apply any of the nonlinear signal processing algorithms described in the book to an application of interest is available on the accompanying FTP site.


Statistical Rethinking

Statistical Rethinking

Author: Richard McElreath

Publisher: CRC Press

Published: 2018-01-03

Total Pages: 488

ISBN-13: 1315362619

DOWNLOAD EBOOK

Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.


Adaptive Filtering

Adaptive Filtering

Author: Lino Garcia Morales

Publisher: BoD – Books on Demand

Published: 2011-09-06

Total Pages: 414

ISBN-13: 9533071583

DOWNLOAD EBOOK

Adaptive filtering is useful in any application where the signals or the modeled system vary over time. The configuration of the system and, in particular, the position where the adaptive processor is placed generate different areas or application fields such as prediction, system identification and modeling, equalization, cancellation of interference, etc., which are very important in many disciplines such as control systems, communications, signal processing, acoustics, voice, sound and image, etc. The book consists of noise and echo cancellation, medical applications, communications systems and others hardly joined by their heterogeneity. Each application is a case study with rigor that shows weakness/strength of the method used, assesses its suitability and suggests new forms and areas of use. The problems are becoming increasingly complex and applications must be adapted to solve them. The adaptive filters have proven to be useful in these environments of multiple input/output, variant-time behaviors, and long and complex transfer functions effectively, but fundamentally they still have to evolve. This book is a demonstration of this and a small illustration of everything that is to come.