Introduction to Solid State Physics for Materials Engineers

Introduction to Solid State Physics for Materials Engineers

Author: Emil Zolotoyabko

Publisher: John Wiley & Sons

Published: 2021-06-28

Total Pages: 306

ISBN-13: 3527348840

DOWNLOAD EBOOK

A concise, accessible, and up-to-date introduction to solid state physics Solid state physics is the foundation of many of today's technologies including LEDs, MOSFET transistors, solar cells, lasers, digital cameras, data storage and processing. Introduction to Solid State Physics for Materials Engineers offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant branch of science for materials engineers. The text links the fundamentals of solid state physics to modern materials, such as graphene, photonic and metamaterials, superconducting magnets, high-temperature superconductors and topological insulators. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented. The text covers a wide range of relevant topics, including propagation of electron and acoustic waves in crystals, electrical conductivity in metals and semiconductors, light interaction with metals, semiconductors and dielectrics, thermoelectricity, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book: Provides a big picture view of solid state physics Contains examples of basic concepts and applications Offers a highly accessible text that fosters real understanding Presents a wealth of helpful worked examples Written for students of materials science, engineering, chemistry and physics, Introduction to Solid State Physics for Materials Engineers is an important guide to help foster an understanding of solid state physics.


Introduction to Solid State Physics for Materials Engineers

Introduction to Solid State Physics for Materials Engineers

Author: Emil Zolotoyabko

Publisher: John Wiley & Sons

Published: 2021-04-13

Total Pages: 304

ISBN-13: 3527831592

DOWNLOAD EBOOK

A concise, accessible, and up-to-date introduction to solid state physics Solid state physics is the foundation of many of today's technologies including LEDs, MOSFET transistors, solar cells, lasers, digital cameras, data storage and processing. Introduction to Solid State Physics for Materials Engineers offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant branch of science for materials engineers. The text links the fundamentals of solid state physics to modern materials, such as graphene, photonic and metamaterials, superconducting magnets, high-temperature superconductors and topological insulators. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented. The text covers a wide range of relevant topics, including propagation of electron and acoustic waves in crystals, electrical conductivity in metals and semiconductors, light interaction with metals, semiconductors and dielectrics, thermoelectricity, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book: Provides a big picture view of solid state physics Contains examples of basic concepts and applications Offers a highly accessible text that fosters real understanding Presents a wealth of helpful worked examples Written for students of materials science, engineering, chemistry and physics, Introduction to Solid State Physics for Materials Engineers is an important guide to help foster an understanding of solid state physics.


Fundamentals of Solid State Engineering

Fundamentals of Solid State Engineering

Author: Manijeh Razeghi

Publisher: Springer Science & Business Media

Published: 2006-06-12

Total Pages: 894

ISBN-13: 0387287515

DOWNLOAD EBOOK

Provides a multidisciplinary introduction to quantum mechanics, solid state physics, advanced devices, and fabrication Covers wide range of topics in the same style and in the same notation Most up to date developments in semiconductor physics and nano-engineering Mathematical derivations are carried through in detail with emphasis on clarity Timely application areas such as biophotonics , bioelectronics


Solid-State Physics

Solid-State Physics

Author: James Patterson

Publisher: Springer Science & Business Media

Published: 2010-12-08

Total Pages: 841

ISBN-13: 3642025897

DOWNLOAD EBOOK

While the standard solid state topics are covered, the basic ones often have more detailed derivations than is customary (with an empasis on crystalline solids). Several recent topics are introduced, as are some subjects normally included only in condensed matter physics. Lattice vibrations, electrons, interactions, and spin effects (mostly in magnetism) are discussed the most comprehensively. Many problems are included whose level is from "fill in the steps" to long and challenging, and the text is equipped with references and several comments about experiments with figures and tables.


Solid State Physics

Solid State Physics

Author: Philip Hofmann

Publisher: John Wiley & Sons

Published: 2015-05-19

Total Pages: 264

ISBN-13: 3527682031

DOWNLOAD EBOOK

A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t follow all the mathematical detail. The revised edition has been carefully updated to present an up-to-date account of the essential topics and recent developments in this exciting field of physics. The coverage now includes ground-breaking materials with high relevance for applications in communication and energy, like graphene and topological insulators, as well as transparent conductors. The text assumes only basic mathematical knowledge on the part of the reader and includes more than 100 discussion questions and some 70 problems, with solutions free to lecturers from the Wiley-VCH website. The author's webpage provides Online Notes on x-ray scattering, elastic constants, the quantum Hall effect, tight binding model, atomic magnetism, and topological insulators. This new edition includes the following updates and new features: * Expanded coverage of mechanical properties of solids, including an improved discussion of the yield stress * Crystal structure, mechanical properties, and band structure of graphene * The coverage of electronic properties of metals is expanded by a section on the quantum hall effect including exercises. New topics include the tight-binding model and an expanded discussion on Bloch waves. * With respect to semiconductors, the discussion of solar cells has been extended and improved. * Revised coverage of magnetism, with additional material on atomic magnetism * More extensive treatment of finite solids and nanostructures, now including topological insulators * Recommendations for further reading have been updated and increased. * New exercises on Hall mobility, light penetrating metals, band structure


Introductory Solid State Physics with MATLAB Applications

Introductory Solid State Physics with MATLAB Applications

Author: Javier E. Hasbun

Publisher: CRC Press

Published: 2019-10-08

Total Pages: 703

ISBN-13: 1466512377

DOWNLOAD EBOOK

Solid state physics, the study and prediction of the fundamental physical properties of materials, forms the backbone of modern materials science and has many technological applications. The unique feature of this text is the MATLABĀ®-based computational approach with several numerical techniques and simulation methods included. This is highly effective in addressing the need for visualization and a direct hands-on approach in learning the theoretical concepts of solid state physics. The code is freely available to all textbook users. Additional Features: Uses the pedagogical tools of computational physics that have become important in enhancing physics teaching of advanced subjects such as solid state physics Adds visualization and simulation to the subject in a way that enables students to participate actively in a hand-on approach Covers the basic concepts of solid state physics and provides students with a deeper understanding of the subject matter Provides unique example exercises throughout the text Obtains mathematical analytical solutions Carries out illustrations of important formulae results using programming scripts that students can run on their own and reproduce graphs and/or simulations Helps students visualize solid state processes and apply certain numerical techniques using MATLABĀ®, making the process of learning solid state physics much more effective Reinforces the examples discussed within the chapters through the use of end-of-chapter exercises Includes simple analytical and numerical examples to more challenging ones, as well as computational problems with the opportunity to run codes, create new ones, or modify existing ones to solve problems or reproduce certain results


Solid-State Physics for Electronics

Solid-State Physics for Electronics

Author: Andre Moliton

Publisher: John Wiley & Sons

Published: 2013-03-01

Total Pages: 293

ISBN-13: 111862324X

DOWNLOAD EBOOK

Describing the fundamental physical properties of materials used in electronics, the thorough coverage of this book will facilitate an understanding of the technological processes used in the fabrication of electronic and photonic devices. The book opens with an introduction to the basic applied physics of simple electronic states and energy levels. Silicon and copper, the building blocks for many electronic devices, are used as examples. Next, more advanced theories are developed to better account for the electronic and optical behavior of ordered materials, such as diamond, and disordered materials, such as amorphous silicon. Finally, the principal quasi-particles (phonons, polarons, excitons, plasmons, and polaritons) that are fundamental to explaining phenomena such as component aging (phonons) and optical performance in terms of yield (excitons) or communication speed (polarons) are discussed.


Diffusion in Solids

Diffusion in Solids

Author: Helmut Mehrer

Publisher: Springer Science & Business Media

Published: 2007-07-24

Total Pages: 645

ISBN-13: 354071488X

DOWNLOAD EBOOK

This book describes the central aspects of diffusion in solids, and goes on to provide easy access to important information about diffusion in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Coverage includes diffusion-controlled phenomena including ionic conduction, grain-boundary and dislocation pipe diffusion. This book will benefit graduate students in such disciplines as solid-state physics, physical metallurgy, materials science, and geophysics, as well as scientists in academic and industrial research laboratories.


Solid-State Laser Engineering

Solid-State Laser Engineering

Author: Walter Koechner

Publisher: Springer

Published: 2013-11-11

Total Pages: 759

ISBN-13: 3662142198

DOWNLOAD EBOOK

This book has once again been updated to keep pace with recent developments and to maintain Koechner's position as "the bible" of the field. Written from an industrial perspective, it provides a detailed discussion of, and data for, solid-state lasers, their characteristics, design and construction.


Quantum Theory of Materials

Quantum Theory of Materials

Author: Efthimios Kaxiras

Publisher: Cambridge University Press

Published: 2019-06-06

Total Pages: 679

ISBN-13: 0521117119

DOWNLOAD EBOOK

An accessible overview of the concepts and tools essential to the physics of materials, with applications, exercises, and color figures.