Enables decision makers to evaluate the impact of technology introduction on process efficiency, cost savings, and health and care quality improvements. Presents real-world implementations, case studies, and field trials. Contains contributions from experts in industry, the public sector, and academia. Provides an extensive overview of the current situation and future trends in well-being technology.
Both the demographics and lack of resources in the health and well-being industry are increasingly forcing us to find alternative solutions for individualized health and social care. In an effort to address this issue, smart technologies present enormous potential in solving this challenge. This book strives to enhance communication and collaboration between technology and health and social care sectors. The reader will receive an extensive overview of the possibilities of various technologies in care sectors (including ICT, electronics, automation, and sensor technology) written by experts from various countries. It will prove extremely useful for engineers developing well-being related systems, software, or other devices that can be used by professionals working with people with specialist needs, well-being and health service providers, educators teaching related courses, and upper level undergraduate students and graduate student studying related topics. The technology focus of the book is widespread and addresses elderly care and hospitals, in addition to solutions for various user groups, devices, and technologies. Beyond serving as a resource for nurses and people working in care sector, the book is also meant to give guidelines for engineers developing person-centered systems by exploring the integration of these technologies into service systems.
This book gathers peer-review contributions to the 4th International Workshop on Gerontechnology, IWoG 2021, held on November 23-24, 2021, in Évora, Portugal. They report on cutting-edge technologies and optimized workflows for promoting active aging and assisting elderly people at home, as well as in healthcare centers. They discuss the main challenges in the development, use and delivery of health care services and technologies. Not only they propose solutions for improving in practice the monitoring and management of health parameters and age-related diseases, yet they also describe improved approaches for helping seniors in their daily tasks and facilitating their communication and integration with assistive technologies, thus improving their quality of life, as well as their social integration. All in all, this book provides health professionals, researchers, and service providers with extensive information on the latest trends in the development and practical application of gerontechnology, with a special emphasis on improving quality of life of the elderly.
Sensor technologies and applications are evolving rapidly driven by the demand for new sensors for monitoring and diagnostic purposes to enable improvements in human health and safety. Simultaneously, sensors are required to consume less power, be autonomous, cost less, and be connected by the Internet of Things. New sensor technologies are being developed to fulfill these needs. This book reviews the latest developments in sensor technology and gives the reader an overview of the state-of-the-art in key areas, such as sensors for diagnostics and monitoring. Features Provides an overview of sensor technologies for monitoring and diagnostics applications. Presents state-of-the-art developments in selected topics for sensors that can be used for monitoring and diagnostics in future healthcare, structural monitoring, and smart environment applications. Features contributions from leading international experts in both industry and academia. Explores application areas that include medical diagnostics and screening, health monitoring, smart textiles, and structural monitoring.
This work is dedicated to CMOS based imaging with the emphasis on the noise modeling, characterization and optimization in order to contribute to the design of high performance imagers in general and range imagers in particular. CMOS is known to be superior to CCD due to its flexibility in terms of integration capabilities, but typically has to be enhanced to compete at parameters as for instance noise, dynamic range or spectral response. This work gathers the widespread theory on noise and extends the theory by a non-rigorous but potentially computing efficient algorithm to estimate noise in time sampled systems.
This highly comprehensive, introductory book explains the basics of structural health monitoring aspects of composite structures. This book serve as an all-in-one reference book in which the reader can receive a basic understanding of composite materials, manufacturing methods, the latest types of optical fiber sensors used for structural health monitoring of composite structures, and demonstrated applications of the use of fiber sensors in a variety of composite material structures. The content draws upon the authors’ and distinguished contributors’ extensive research/teaching and industrial experience to fully cover the structural health monitoring of composite materials using fiber optic sensing methods.
To explore how mobile technology can be employed to enhance the lives of older adults, the Board on Behavioral, Cognitive, and Sensory Sciences of the National Academies of Sciences, Engineering, and Medicine commissioned 6 papers, which were presented at a workshop held on December 11 and 12, 2019. These papers review research on mobile technologies and aging, and highlight promising avenues for further research.
This introductory, yet in-depth, book explains the physical principles of electronic imaging and sensing and provides the reader with the information necessary to understand the design, operation, and practical applications of contemporary electronic imaging and sensing systems. The text has strong practical focus and contains examples of biomedical applications of optical electronic imaging and sensing. Each chapter draws upon the authors’ extensive research, teaching, and industrial experience and provides a useful resource for undergraduate and graduate students, as well as a convenient reference for scientists and engineers working in the field of electronic imaging and sensing.
This book presents in-depth coverage of magnetic sensors in industrial applications. It is divided into three sections: devices and technology for magnetic sensing, industrial applications (automotive, navigation), and emerging applications. Topics include transmission speed sensor ICs, dynamic differential Hall ICs, chopped Hall switches, programmable linear output Hall sensors, low power Hall ICs, self-calibrating differential Hall ICs for wheel speed sensing, dynamic differential Hall ICs, uni- and bipolar Hall IC switches, chopped mono cell Hall ICs, and electromagnetic levitation.
The aim of this book is to educate the reader on radiation detectors, from sensor to read-out electronics to application. Relatively new detector materials, such as CdZTe and Cr compensated GaAs, are introduced, along with emerging applications of radiation detectors. This X-ray technology has practical applications in medical, industrial, and security applications. It identifies materials based on their molecular composition, not densities as the traditional transmission equipment does. With chapters written by an international selection of authors from both academia and industry, the book covers a wide range of topics on radiation detectors, which will satisfy the needs of both beginners and experts in the field.