Rubber Technology

Rubber Technology

Author: M. Morton

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 643

ISBN-13: 9401729255

DOWNLOAD EBOOK

About ten years after the publication of the Second Edition (1973), it became apparent that it was time for an up-date of this book. This was especially true in this case, since the subject matter has traditionally dealt mainly with the structure, properties, and technology of the various elastomers used in industry, and these are bound to undergo significant changes over the period of a decade. In revising the contents of this volume, it was thought best to keep the orig inal format. Hence the first five chapters discuss the same general subject matter as before. The chapters dealing with natural rubber and the synthetic elastomers are up-dated, and an entirely new chapter has been added on the thermoplastic elastomers, which have, of course, grown tremendously in importance. Another innovation is the addition of a new chapter, "Miscellaneous Elastomers," to take care of "old" elastomers, e.g., polysulfides, which have decreased some what in importance, as well as to introduce some of the newly-developed syn thetic rubbers which have not yet reached high production levels. The editor wishes to express his sincere appreciation to all the contributors, without whose close cooperation this task would have been impossible. He would especially like to acknowledge the invaluable assistance of Dr. Howard Stephens in the planning of this book, and for his suggestion of suitable authors.


Science and Technology of Rubber

Science and Technology of Rubber

Author: James E. Mark

Publisher: Elsevier

Published: 2011-07-28

Total Pages: 762

ISBN-13: 0080456014

DOWNLOAD EBOOK

The Science and Technology of Rubber, Third Edition provides a broad survey of elastomers with special emphasis on materials with a rubber-like elasticity. As in the 2nd edition, the emphasis remains on a unified treatment of the material; exploring topics from the chemical aspects such as elastomer synthesis and curing, through recent theoretical developments and characterization of equilibrium and dynamic properties, to the final applications of rubber, including tire engineering and manufacturing. Many advances have been made in polymer and elastomers research over the past ten years since the 2nd edition was published. Updated material stresses the continuous relationship between the ongoing research in synthesis, physics, structure and mechanics of rubber technology and industrial applications. Special attention is paid to recent advances in rubber-like elasticity theory and new processing techniques for elastomers. This new edition is comprised of 20% new material, including a new chapter on environmental issues and tire recycling.


An Introduction to Rubber Technology

An Introduction to Rubber Technology

Author: Andrew Ciesielski

Publisher: iSmithers Rapra Publishing

Published: 1999

Total Pages: 192

ISBN-13: 9781859571507

DOWNLOAD EBOOK

Rapra Technology is the leading independent international organisation with over 80 years of experience providing technology, information and consultancy on all aspects of rubbers and plastics. The company has extensive processing, analytical and testing laboratory facilities and expertise, and produces a range of engineering and data management software products, and computerised knowledge-based systems. Rapra also publishes books, technical journals, reports, technological and business surveys, conference proceedings and trade directories. These publishing activities are supported by an Information Centre which maintains and develops the world's most comprehensive database of commercial and technical information on rubbers and plastics. Book jacket.


Rubber Technology Handbook

Rubber Technology Handbook

Author: Werner Hofmann

Publisher: Hanser Gardner Publications

Published: 1989-01-01

Total Pages: 644

ISBN-13: 9781569901458

DOWNLOAD EBOOK

"This major new handbook describes and summarizes the state of the art in rubber technology. It includes information on properties, processes and applications for both natural and synthetic rubber products. Each chapter details data on monomer production, polymerization, molecular structure, recipes for compounds, compounding and processing, vulcanization, and properties of rubber products, in addition to chemicals for mastification, vulcanization, stabilization, reinforcing and filling, processing aids, and more."--Publisher description.


Rubber Processing

Rubber Processing

Author: Peter S. Johnson

Publisher: Hanser Gardner Publications

Published: 2001

Total Pages: 145

ISBN-13: 9781569903094

DOWNLOAD EBOOK

1 Overview of Rubber Processing p. 1 1.1 Introduction p. 1 1.2 Testing p. 2 1.2.1 Raw Materials Quality Assurance p. 2 1.2.2 Processability Testing of Mixed Compounds p. 2 1.2.3 End Product Testing p. 3 1.3 Conclusion p. 3 References p. 4 2 Raw Materials Acceptance and Specifications p. 5 2.1 Introduction p. 5 2.2 Raw Materials Specifications p. 5 2.2.1 Elastomers p. 6 2.2.2 Fillers p. 7 3 Mixing of Rubber Compounds p. 9 3.1 Introduction p. 9 3.2 Material Flow to the Mixer p. 10 3.2.1 Receipt and Storage of Raw Materials p. 11 3.2.2 Feeding, Weighing, and Charging Raw Materials p. 12 3.2.2.1 Weighing Major Ingredients p. 14 3.2.2.2 Small Component Weighing p. 14 3.3 The Mixing Process p. 15 3.3.1 Incorporation p. 16 3.3.2 Dispersion p. 17 3.3.3 Distribution p. 19 3.3.4 Plasticization p. 20 3.3.5 Natural Rubber Mastication p. 20 3.3.6 Flow Visualization and Modeling of the Mixing Process p. 20 3.3.6.1 Flow Visualization p. 21 3.3.6.2 Modeling p. 21 3.3.7 Flow Behavior on Mills p. 24 3.4 Internal Mixers p. 26 3.4.1 Developments in Internal Mixers p. 29 3.4.1.1 Farrel Mixers p. 29 3.4.1.2 Kobelco Stewart Bolling Mixers p. 30 3.4.1.3 Krupp-Midwest Werner und Pfleiderer Mixers p. 31 3.4.1.4. Pomini Mixers p. 31 3.4.2 Choosing a Mixer p. 32 3.4.3 Inspection and Preventative Maintenance of Mixers p. 32 3.4.4 Internal Mixer Operation p. 33 3.4.4.1 Mixing Procedures p. 33 3.4.4.2 Temperature Control in Internal Mixers p. 37 3.4.4.3 Rotor Speed p. 37 3.4.4.4 Ram Pressure p. 38 3.4.4.5 Batch Size p. 38 3.4.4.6 Dump Criteria p. 40 3.4.5 Control of the Mixing Process p. 41 3.4.6 Scale-Up p. 41 3.5 Take-Off Systems p. 43 3.5.1 Dump Mills p. 43 3.5.2 Packaging p. 44 3.5.3 Single Pass Mixing p. 45 3.6 Other Mixing Equipment p. 45 3.6.1 Mill Mixing p. 45 3.6.2 Continuous Mixing p. 47 3.7 Custom Compounding p. 47 3.8 Troubleshooting the Mixing Process p. 48 3.8.1 Inadequate Dispersion or Distribution p. 49 3.8.2 Scorchy Compound p. 49 3.8.3 Contamination p. 49 3.8.4 Poor Handling on Dump Mill p. 49 3.8.5 Batch-to-Batch Variation p. 49 3.9 Concluding Comments p. 50 References p. 50 4 Flow Behavior of Compounds p. 53 4.1 Introduction p. 53 4.2 Fundamentals of Rheology p. 53 4.3 Effect of Compounding Ingredients on Processing Behavior p. 58 4.3.1 Elastomers p. 58 4.3.2 Fillers p. 59 4.3.2.1 Carbon Blacks p. 59 4.3.3 Plasticizers and Processing Aids p. 60 4.3.3.1 Plasticizers p. 61 4.3.3.2 Processing Aids p. 62 4.3.4 Elasticity p. 63 4.3.5 Conclusion p. 64 References p. 64 5 Testing of Compounds After Mixing p. 65 5.1 Introduction p. 65 5.2 Processability Test Instruments p. 68 5.2.1 The Mooney Viscometer p. 68 5.2.1.1 Delta Mooney p. 69 5.2.1.2 TMS Rheometer p. 70 5.2.2 Capillary Rheometers p. 80 5.2.3 Oscillating Disk Curemeters p. 73 5.2.4 Rotorless Curemeters p. 75 5.2.5 Dynamic Mechanical Rheological Testers p. 75 5.2.6 Stress Relaxation Instruments p. 75 5.2.7 ODR Cure Times Correlation with MDR p. 77 5.3 Comparison of Alpha Technologies Processability Test Instruments p. 78 5.4 Conclusion p. 80 References p. 80 6 The Curing Process p. 83 6.1 Introduction p. 84 6.2 Scorch or Premature Vulcanization p. 84 References p. 85 7 Calendering of Rubber p. 87 7.1 Introduction p. 87 7.2 Equipment p. 87 7.3 Processes p. 88 7.3.1 Feeding p. 88 7.3.2 Sheeting p. 88 7.3.3 Frictioning p. 88 7.3.4 Coating p. 89 7.3.5 Roller Dies p. 89 7.3.6 Downstream Processes p. 90 7.4 Modeling the Calendering Process p. 90 7.5 Troubleshooting Problems in Calendering p. 91 7.5.1 Scorch p. 91 7.5.2 Blistering p. 91 7.5.3 Rough or Holed Sheet p. 91 7.5.4 Tack p. 91 7.5.5 Bloom p. 91 7.6 Conclusions p. 91 References p. 92 8 Extrusion of Rubber p. 93 8.1 Introduction p. 93 8.2 Feeding p. 93 8.2.1 Cold-Feed versus Hot-Feed Extruders p. 94 8.3 Mass Transfer, Conveying, or Pumping p. 96 8.3.1 Flow Mechanism p. 97 8.3.2 Extruder Designs p. 98 8.3.2.1 The Maillefer Screw p. 99 8.3.2.2 The Iddon Screw p. 100 8.3.2.3 The Transfermix p. 101 8.3.2.4 The EVK Screw p. 101 8.3.2.5 The Pin Barrel Extruder p. 101 8.3.2.6 The Cavity Transfer Mixer p. 102 8.3.2.7 Vented Extruders p. 104 8.3.2.8 Dump Extruders p. 104 8.3.2.9 Strainers p. 105 8.3.2.10 Extruder Barrels p. 105 8.4 Extruder Operation and Control p. 105 8.5 Shaping p. 108 8.5.1 Extruder Heads p. 108 8.5.1.1 Coextrusion p. 109 8.5.1.2 Crossheading p. 109 8.5.1.3 Shear Heads p. 109 8.5.2 Dies p. 111 8.5.2.1 Pressure Drop p. 111 8.5.2.2 Die Swell p. 111 8.6 Take-Off and Curing p. 112 8.6.1 Continuous Vulcanization Systems p. 113 8.6.1.1 Pressurized Steam Systems p. 113 8.6.1.2 Hot Air Curing Systems p. 113 8.6.1.3 Hot Air Fluidized Bed Systems p. 114 8.6.1.4 Liquid Salt Bath Systems p. 114 8.6.1.5 Microwave Systems p. 114 8.6.1.6 Shear Head Systems p. 115 8.6.1.7 Electron Beam Systems p. 115 8.6.1.8 Steel Belt Presses p. 116 8.6.1.9 Ultrasonic Vulcanization p. 116 8.7 Troubleshooting the Extrusion Process p. 116 8.7.1 Low Output Rate p. 116 8.7.2 Poor Dimensional Stability of Extrudate p. 117 8.7.3 Excessive Heat Buildup in Compound p. 117 8.7.4 Rough Surface on Extrudate p. 117 8.7.5 Contamination p. 117 8.7.6 Porosity in Extrudate p. 117 8.7.7 Strip Difficult to Feed p. 117 8.7.8 Surging Output p. 118 8.8 Concluding Comments p. 118 References p. 118 9 Molding of Rubber p. 119 9.1 Introduction p. 119 9.2 Compression and Transfer Molding p. 120 9.3 Injection Molding of Rubber p. 122 9.3.1 Injection Molding Equipment p. 125 9.3.1.1 Delivery Systems p. 125 9.3.1.2 Nozzles, Runners, and Gates p. 127 9.3.1.3 Molds p. 128 9.3.1.4 Automatic Ejection p. 129 9.3.1.5 Deflashing p. 129 9.3.2 The Injection Molding Process p. 130 9.3.2.1 Injection Temperature p. 130 9.3.2.2 Screw Speed p. 131 9.3.2.3 Back Pressure p. 131 9.3.2.4 Injection Pressure p. 131 9.3.2.5 Summary p. 131 9.3.3 Monitoring and Modeling the Injection Molding Process p. 131 9.3.4 Control of the Injection Molding Process p. 132 9.3.5 Compounds for Injection Molding p. 133 9.3.6 Problems in Injection Molding of Rubber p. 133 References p. 136 10 Finished Product Testing p. 137 10.1 Introduction p. 137 10.2 Test of Filler Distribution and Dispersion p. 138 10.2.1 Microscopy p. 138 10.2.2 Surface Roughness p. 138 10.3 Tests on Cured Specimens p. 138 10.3.1 Tensile Tests p. 139 10.3.2 Hardness p. 139 10.3.3 Compression Set p. 139 10.3.4 Solvent Resistance p. 140 10.3.5 Aging p. 140 10.3.6 Ozone Cracking p. 140 References p. 140 Index p. 143.


Blends of Natural Rubber

Blends of Natural Rubber

Author: K.C. Jones

Publisher: Springer Science & Business Media

Published: 1997-12-31

Total Pages: 280

ISBN-13: 9780412819407

DOWNLOAD EBOOK

Blends of natural rubber with speciality synthetic rubbers, such as nitrile rubber and ethylene propylene rubbers, have, in the past, failed to combine the best properties of polymers, resulting in a poor return in terms of added value from the blending process. The idea of blending synthetic rubbers with natural rubbe is certainly not a new one, but it is only now that this can be shown to be possible with consistently positive resluts, but eh use of novel techniques which this book describes, giving valuable information on the technology required and the results which can be achieved. Blends of Natural Rubber is an invaluable source of information for all those working in the area of rubber technology and polymer blend technology.


Reverse Engineering of Rubber Products

Reverse Engineering of Rubber Products

Author: Saikat Das Gupta

Publisher: CRC Press

Published: 2013-09-19

Total Pages: 360

ISBN-13: 0849373166

DOWNLOAD EBOOK

Reverse engineering is widely practiced in the rubber industry. Companies routinely analyze competitors’ products to gather information about specifications or compositions. In a competitive market, introducing new products with better features and at a faster pace is critical for any manufacturer. Reverse Engineering of Rubber Products: Concepts, Tools, and Techniques explains the principles and science behind rubber formulation development by reverse engineering methods. The book describes the tools and analytical techniques used to discover which materials and processes were used to produce a particular vulcanized rubber compound from a combination of raw rubber, chemicals, and pigments. A Compendium of Chemical, Analytical, and Physical Test Methods Organized into five chapters, the book first reviews the construction of compounding ingredients and formulations, from elastomers, fillers, and protective agents to vulcanizing chemicals and processing aids. It then discusses chemical and analytical methods, including infrared spectroscopy, thermal analysis, chromatography, and microscopy. It also examines physical test methods for visco-elastic behavior, heat aging, hardness, and other features. A chapter presents important reverse engineering concepts. In addition, the book includes a wide variety of case studies of formula reconstruction, covering large products such as tires and belts as well as smaller products like seals and hoses. Get Practical Insights on Reverse Engineering from the Book’s Case Studies Combining scientific principles and practical advice, this book brings together helpful insights on reverse engineering in the rubber industry. It is an invaluable reference for scientists, engineers, and researchers who want to produce comparative benchmark information, discover formulations used throughout the industry, improve product performance, and shorten the product development cycle.


Chemistry, Manufacture and Applications of Natural Rubber

Chemistry, Manufacture and Applications of Natural Rubber

Author: Shinzo Kohjiya

Publisher: Woodhead Publishing

Published: 2021-03-24

Total Pages: 508

ISBN-13: 0128188448

DOWNLOAD EBOOK

Chemistry, Manufacture and Applications of Natural Rubber, Second Edition presents the latest advances in the processing, properties and advanced applications of natural rubber (NR), drawing on state-of-the-art research in the field. Chapters cover manufacturing, processing and properties of natural rubber, describing biosynthesis, vulcanization for improved performance, strain-induced crystallization, self-reinforcement, rheology and mechanochemistry for processing, computer simulation of properties, scattering techniques and stabilizing agents. Applications covered include natural rubber, carbon allotropes, eco-friendly soft bio-composites using NR matrices and marine products, the use of NR for high functionality such as shape memory, NR for the tire industry, and natural rubber latex with advanced applications. This is an essential resource for academic researchers, scientists and (post)graduate students in rubber science, polymer science, materials science and engineering, and chemistry. In industry, this book enables professionals, R&D, and producers across the natural rubber, tire, rubber and elastomer industries, as well as across industries looking to use natural rubber products, to understand and utilize natural rubber for cutting-edge applications. - Explains the latest manufacture and processing techniques for natural rubber (NR) with enhanced properties - Explores novel applications of natural rubber across a range of industries, including current and potential uses - Discusses resources and utilization, and considers sustainable future development of natural rubber