Introduction to Nonlinear and Global Optimization

Introduction to Nonlinear and Global Optimization

Author: Eligius M.T. Hendrix

Publisher: Springer

Published: 2010-04-27

Total Pages: 218

ISBN-13: 0387886702

DOWNLOAD EBOOK

This self-contained text provides a solid introduction to global and nonlinear optimization, providing students of mathematics and interdisciplinary sciences with a strong foundation in applied optimization techniques. The book offers a unique hands-on and critical approach to applied optimization which includes the presentation of numerous algorithms, examples, and illustrations, designed to improve the reader’s intuition and develop the analytical skills needed to identify optimization problems, classify the structure of a model, and determine whether a solution fulfills optimality conditions.


Introduction to Nonlinear Optimization

Introduction to Nonlinear Optimization

Author: Amir Beck

Publisher: SIAM

Published: 2014-10-27

Total Pages: 286

ISBN-13: 1611973651

DOWNLOAD EBOOK

This book provides the foundations of the theory of nonlinear optimization as well as some related algorithms and presents a variety of applications from diverse areas of applied sciences. The author combines three pillars of optimization?theoretical and algorithmic foundation, familiarity with various applications, and the ability to apply the theory and algorithms on actual problems?and rigorously and gradually builds the connection between theory, algorithms, applications, and implementation. Readers will find more than 170 theoretical, algorithmic, and numerical exercises that deepen and enhance the reader's understanding of the topics. The author includes offers several subjects not typically found in optimization books?for example, optimality conditions in sparsity-constrained optimization, hidden convexity, and total least squares. The book also offers a large number of applications discussed theoretically and algorithmically, such as circle fitting, Chebyshev center, the Fermat?Weber problem, denoising, clustering, total least squares, and orthogonal regression and theoretical and algorithmic topics demonstrated by the MATLAB? toolbox CVX and a package of m-files that is posted on the book?s web site.


Introduction to Global Optimization

Introduction to Global Optimization

Author: R. Horst

Publisher: Springer Science & Business Media

Published: 2000-12-31

Total Pages: 376

ISBN-13: 9780792367567

DOWNLOAD EBOOK

A textbook for an undergraduate course in mathematical programming for students with a knowledge of elementary real analysis, linear algebra, and classical linear programming (simple techniques). Focuses on the computation and characterization of global optima of nonlinear functions, rather than the locally optimal solutions addressed by most books on optimization. Incorporates the theoretical, algorithmic, and computational advances of the past three decades that help solve globally multi-extreme problems in the mathematical modeling of real world systems. Annotation copyright by Book News, Inc., Portland, OR


Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming

Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming

Author: Mohit Tawarmalani

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 492

ISBN-13: 1475735324

DOWNLOAD EBOOK

Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs.


Global Optimization

Global Optimization

Author: Marco Locatelli

Publisher: SIAM

Published: 2013-10-16

Total Pages: 439

ISBN-13: 1611972671

DOWNLOAD EBOOK

This volume contains a thorough overview of the rapidly growing field of global optimization, with chapters on key topics such as complexity, heuristic methods, derivation of lower bounds for minimization problems, and branch-and-bound methods and convergence. The final chapter offers both benchmark test problems and applications of global optimization, such as finding the conformation of a molecule or planning an optimal trajectory for interplanetary space travel. An appendix provides fundamental information on convex and concave functions. Intended for Ph.D. students, researchers, and practitioners looking for advanced solution methods to difficult optimization problems. It can be used as a supplementary text in an advanced graduate-level seminar.


Introduction to Global Optimization Exploiting Space-Filling Curves

Introduction to Global Optimization Exploiting Space-Filling Curves

Author: Yaroslav D. Sergeyev

Publisher: Springer

Published: 2013-08-06

Total Pages: 0

ISBN-13: 9781461480419

DOWNLOAD EBOOK

Introduction to Global Optimization Exploiting Space-Filling Curves provides an overview of classical and new results pertaining to the usage of space-filling curves in global optimization. The authors look at a family of derivative-free numerical algorithms applying space-filling curves to reduce the dimensionality of the global optimization problem; along with a number of unconventional ideas, such as adaptive strategies for estimating Lipschitz constant, balancing global and local information to accelerate the search. Convergence conditions of the described algorithms are studied in depth and theoretical considerations are illustrated through numerical examples. This work also contains a code for implementing space-filling curves that can be used for constructing new global optimization algorithms. Basic ideas from this text can be applied to a number of problems including problems with multiextremal and partially defined constraints and non-redundant parallel computations can be organized. Professors, students, researchers, engineers, and other professionals in the fields of pure mathematics, nonlinear sciences studying fractals, operations research, management science, industrial and applied mathematics, computer science, engineering, economics, and the environmental sciences will find this title useful . ​


Nonlinear Optimization

Nonlinear Optimization

Author: Andrzej Ruszczynski

Publisher: Princeton University Press

Published: 2011-09-19

Total Pages: 463

ISBN-13: 1400841054

DOWNLOAD EBOOK

Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern topics such as optimality conditions and numerical methods for problems involving nondifferentiable functions, semidefinite programming, metric regularity and stability theory of set-constrained systems, and sensitivity analysis of optimization problems. Based on a decade's worth of notes the author compiled in successfully teaching the subject, this book will help readers to understand the mathematical foundations of the modern theory and methods of nonlinear optimization and to analyze new problems, develop optimality theory for them, and choose or construct numerical solution methods. It is a must for anyone seriously interested in optimization.


Introduction to Applied Optimization

Introduction to Applied Optimization

Author: Urmila Diwekar

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 342

ISBN-13: 1475737459

DOWNLOAD EBOOK

This text presents a multi-disciplined view of optimization, providing students and researchers with a thorough examination of algorithms, methods, and tools from diverse areas of optimization without introducing excessive theoretical detail. This second edition includes additional topics, including global optimization and a real-world case study using important concepts from each chapter. Introduction to Applied Optimization is intended for advanced undergraduate and graduate students and will benefit scientists from diverse areas, including engineers.


Nonlinear Programming

Nonlinear Programming

Author: Peter Zörnig

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2014-08-22

Total Pages: 402

ISBN-13: 3110372517

DOWNLOAD EBOOK

This book is an introduction to nonlinear programming. It deals with the theoretical foundations and solution methods, beginning with the classical procedures and reaching up to “modern” methods like trust region methods or procedures for nonlinear and global optimization. A comprehensive bibliography including diverse web sites with information about nonlinear programming, in particular software, is presented. Without sacrificing the necessary mathematical rigor, excessive formalisms are avoided. Several examples, exercises with detailed solutions, and applications are provided, making the text adequate for individual studies. The book is written for students from the fields of applied mathematics, engineering, economy, and computation.


Deterministic Global Optimization

Deterministic Global Optimization

Author: Christodoulos A. Floudas

Publisher: Springer Science & Business Media

Published: 2000

Total Pages: 774

ISBN-13: 9780792360148

DOWNLOAD EBOOK

This book provides a unified and insightful treatment of deterministic global optimization. It introduces theoretical and algorithmic advances that address the computation and characterization of global optima, determine valid lower and upper bounds on the global minima and maxima, and enclose all solutions of nonlinear constrained systems of equations. Among its special features, the book: Introduces the fundamentals of deterministic global optimization; Provides a thorough treatment of decomposition-based global optimization approaches for biconvex and bilinear problems; Covers global optimization methods for generalized geometric programming problems Presents in-depth global optimization algorithms for general twice continuously differentiable nonlinear problems; Provides a detailed treatment of global optimization methods for mixed-integer nonlinear problems; Develops global optimization approaches for the enclosure of all solutions of nonlinear constrained systems of equations; Includes many important applications from process design, synthesis, control, and operations, phase equilibrium, design under uncertainty, parameter estimation, azeotrope prediction, structure prediction in clusters and molecules, protein folding, and peptide docking. Audience: This book can be used as a textbook in graduate-level courses and as a desk reference for researchers in all branches of engineering and applied science, applied mathematics, industrial engineering, operations research, computer science, economics, computational chemistry and molecular biology.