Using the author's considerable experience of applying Mathcad to engineering problems, Engineering with Mathcad identifies the most powerful functions and features of the software and teaches how to apply these to create comprehensive engineering calculations. Many examples from a variety of engineering fields demonstrate the power and utility of Mathcad's tools, while also demonstrating how other software, such as Microsoft Excel spreadsheets, can be incorporated effectively. This simple, step-by-step approach makes this book an ideal Mathcad text for professional engineers as well as engineering and science students.A CD-ROM packaged with the book contains all the examples in the text and an evaluation version of the Mathcad software, enabling the reader to learn by doing and experiment by changing parameters.* Identifies the key Mathcad functions for creating comprehensive engineering calculations* A step-by-step approach enables easy learning for professional engineers and students alike* Includes a CD-ROM containing all the examples in the text and an evaluation version of the Mathcad software
An introduction to RF propagation that spans all wireless applications This book provides readers with a solid understanding of the concepts involved in the propagation of electromagnetic waves and of the commonly used modeling techniques. While many books cover RF propagation, most are geared to cellular telephone systems and, therefore, are limited in scope. This title is comprehensive-it treats the growing number of wireless applications that range well beyond the mobile telecommunications industry, including radar and satellite communications. The author's straightforward, clear style makes it easy for readers to gain the necessary background in electromagnetics, communication theory, and probability, so they can advance to propagation models for near-earth, indoor, and earth-space propagation. Critical topics that readers would otherwise have to search a number of resources to find are included: * RF safety chapter provides a concise presentation of FCC recommendations, including application examples, and prepares readers to work with real-world propagating systems * Antenna chapter provides an introduction to a wide variety of antennas and techniques for antenna analysis, including a detailed treatment of antenna polarization and axial ratio; the chapter contains a set of curves that permit readers to estimate polarization loss due to axial ratio mismatch between transmitting and receiving antennas without performing detailed calculations * Atmospheric effects chapter provides curves of typical atmospheric loss, so that expected loss can be determined easily * Rain attenuation chapter features a summary of how to apply the ITU and Crane rain models * Satellite communication chapter provides the details of earth-space propagation analysis including rain attenuation, atmospheric absorption, path length determination and noise temperature determination Examples of widely used models provide all the details and information needed to allow readers to apply the models with confidence. References, provided throughout the book, enable readers to explore particular topics in greater depth. Additionally, an accompanying Wiley ftp site provides supporting MathCad files for select figures in the book. With its emphasis on fundamentals, detailed examples, and comprehensive coverage of models and applications, this is an excellent text for upper-level undergraduate or graduate students, or for the practicing engineer who needs to develop an understanding of propagation phenomena.
A revised edition of the well-received thermodynamics text, this work retains the thorough coverage and excellent organization that made the first edition so popular. Now incorporates industrially relevant microcomputer programs, with which readers can perform sophisticated thermodynamic calculations, including calculations of the type they will encounter in the lab and in industry. Also provides a unified treatment of phase equilibria. Emphasis is on analysis and prediction of liquid-liquid and vapor-liquid equilibria, solubility of gases and solids in liquids, solubility of liquids and solids in gases and supercritical fluids, freezing point depressions and osmotic equilibria, as well as traditional vapor-liquid and chemical reaction equilibria. Contains many new illustrations and exercises.
The study of flight dynamics requires a thorough understanding of the theory of the stability and control of aircraft, an appreciation of flight control systems and a grounding in the theory of automatic control. Flight Dynamics Principles is a student focused text and provides easy access to all three topics in an integrated modern systems context. Written for those coming to the subject for the first time, the book provides a secure foundation from which to move on to more advanced topics such as, non-linear flight dynamics, flight simulation, handling qualities and advanced flight control. - Additional examples to illustrate the application of computational procedures using tools such as MATLAB®, MathCad® and Program CC® - Improved compatibility with, and more expansive coverage of the North American notational style - Expanded coverage of lateral-directional static stability, manoeuvrability, command augmentation and flight in turbulence - An additional coursework study on flight control design for an unmanned air vehicle (UAV)
Introduction and background; Exploratory data analysis and graphics; Deterministic functions for ecological modeling; Probability and stochastic distributions for ecological modeling; Stochatsic simulation and power analysis; Likelihood and all that; Optimization and all that; Likelihood examples; Standar statistics revisited; Modeling variance; Dynamic models.
An Introduction to Numerical Methods using Mathcad is designed to be used in any introductory level numerical methods course. It provides excellent coverage of numerical methods while simultaneously demonstrating the general applicability of Mathcad to problem solving. This textbook also provides a reliable source of reference material to practicing engineers and scientists and in other junior and senior-level courses where Mathcad can be effectively utilized as a software tool in problem solving. A principal goal of this book is to furnish the background needed to create Mathcad documents for the generation of solutions to a variety of problems. Specific applications involving root-finding, interpolation, curve-fitting, matrices, derivatives, integrals and differential equations are discussed and the broad applicability of Mathcad demonstrated. Wherever appropriate, the use of Mathcad functions offering shortcuts and alternatives to otherwise long and tedious numerical solutions is also demonstrated.