Introduction to Machine Learning with Python

Introduction to Machine Learning with Python

Author: Andreas C. Müller

Publisher: "O'Reilly Media, Inc."

Published: 2016-09-26

Total Pages: 429

ISBN-13: 1449369898

DOWNLOAD EBOOK

Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you’ll learn: Fundamental concepts and applications of machine learning Advantages and shortcomings of widely used machine learning algorithms How to represent data processed by machine learning, including which data aspects to focus on Advanced methods for model evaluation and parameter tuning The concept of pipelines for chaining models and encapsulating your workflow Methods for working with text data, including text-specific processing techniques Suggestions for improving your machine learning and data science skills


Introduction to Machine Learning in the Cloud with Python

Introduction to Machine Learning in the Cloud with Python

Author: Pramod Gupta

Publisher: Springer Nature

Published: 2021-04-28

Total Pages: 284

ISBN-13: 3030712702

DOWNLOAD EBOOK

This book provides an introduction to machine learning and cloud computing, both from a conceptual level, along with their usage with underlying infrastructure. The authors emphasize fundamentals and best practices for using AI and ML in a dynamic infrastructure with cloud computing and high security, preparing readers to select and make use of appropriate techniques. Important topics are demonstrated using real applications and case studies.


Introduction to Machine Learning with Python

Introduction to Machine Learning with Python

Author: William Gray

Publisher: Independently Published

Published: 2019-05-04

Total Pages: 276

ISBN-13: 9781096755364

DOWNLOAD EBOOK

What exactly is machine learning and why is it so valuable in the online business ? Are you thinking of learning Python machine learning ?This book teach well you the practical ways to do it ! ★★★ Buy the Paperback version and get the Kindle Book versions for FREE ★★★ Machine Learning is a branch of AI that applied algorithms to learn from data and create predictions - this is important in predicting the world around us. Python is a popular and open-source programming language. In addition, it is one of the most applied languages in artificial intelligence and other scientific fields. Today, it is a top skill in high demand in the job market. Machine learning has become an integral part of many commercial applications and research projects. Using Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. Inside Introduction to Machine Learning with Python, you'll learn: Fundamental concepts and applications of machine learning Understand the various categories of machine learning algorithms. Some of the branches of Artificial Intelligence The basics of Python Concepts of Machine Learning using Python Python Machine Learning Applications Machine Learning Case Studies with Python The way that Python evolved throughout time And many more Throughout the recent years, artificial intelligence and machine learning have made some enormous, significant strides in terms of universal, global applicability. You'll discover the steps required to develop a successful machine-learning application using Python. Introduction to Machine Learning with Python is a step-by-step guide for any person who wants to start learning Artificial Intelligence - It will help you in preparing a solid foundation and learn any other high-level courses. Stay ahead and make a choice that will last... If You like to know more, scroll to the top and select " BUY NOW " buttom ★★★ Buy the Paperback version and get the Kindle Book versions for FREE ★★★


Machine Learning with Python Cookbook

Machine Learning with Python Cookbook

Author: Chris Albon

Publisher: "O'Reilly Media, Inc."

Published: 2018-03-09

Total Pages: 285

ISBN-13: 1491989335

DOWNLOAD EBOOK

This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications. You’ll find recipes for: Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naïve Bayes, clustering, and neural networks Saving and loading trained models


Artificial Intelligence with Python

Artificial Intelligence with Python

Author: Prateek Joshi

Publisher: Packt Publishing Ltd

Published: 2017-01-27

Total Pages: 437

ISBN-13: 1786469677

DOWNLOAD EBOOK

Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.


An Introduction to Statistical Learning

An Introduction to Statistical Learning

Author: Gareth James

Publisher: Springer Nature

Published: 2023-08-01

Total Pages: 617

ISBN-13: 3031387473

DOWNLOAD EBOOK

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.


Python Machine Learning

Python Machine Learning

Author: Wei-Meng Lee

Publisher: John Wiley & Sons

Published: 2019-04-04

Total Pages: 324

ISBN-13: 1119545692

DOWNLOAD EBOOK

Python makes machine learning easy for beginners and experienced developers With computing power increasing exponentially and costs decreasing at the same time, there is no better time to learn machine learning using Python. Machine learning tasks that once required enormous processing power are now possible on desktop machines. However, machine learning is not for the faint of heart—it requires a good foundation in statistics, as well as programming knowledge. Python Machine Learning will help coders of all levels master one of the most in-demand programming skillsets in use today. Readers will get started by following fundamental topics such as an introduction to Machine Learning and Data Science. For each learning algorithm, readers will use a real-life scenario to show how Python is used to solve the problem at hand. • Python data science—manipulating data and data visualization • Data cleansing • Understanding Machine learning algorithms • Supervised learning algorithms • Unsupervised learning algorithms • Deploying machine learning models Python Machine Learning is essential reading for students, developers, or anyone with a keen interest in taking their coding skills to the next level.


Machine Learning in Python

Machine Learning in Python

Author: Michael Bowles

Publisher: John Wiley & Sons

Published: 2015-04-27

Total Pages: 361

ISBN-13: 1118961749

DOWNLOAD EBOOK

Learn a simpler and more effective way to analyze data and predict outcomes with Python Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, data preparation, and using the trained models in practice. You will learn a core set of Python programming techniques, various methods of building predictive models, and how to measure the performance of each model to ensure that the right one is used. The chapters on penalized linear regression and ensemble methods dive deep into each of the algorithms, and you can use the sample code in the book to develop your own data analysis solutions. Machine learning algorithms are at the core of data analytics and visualization. In the past, these methods required a deep background in math and statistics, often in combination with the specialized R programming language. This book demonstrates how machine learning can be implemented using the more widely used and accessible Python programming language. Predict outcomes using linear and ensemble algorithm families Build predictive models that solve a range of simple and complex problems Apply core machine learning algorithms using Python Use sample code directly to build custom solutions Machine learning doesn't have to be complex and highly specialized. Python makes this technology more accessible to a much wider audience, using methods that are simpler, effective, and well tested. Machine Learning in Python shows you how to do this, without requiring an extensive background in math or statistics.


Python Machine Learning

Python Machine Learning

Author: Sebastian Raschka

Publisher: Packt Publishing Ltd

Published: 2015-09-23

Total Pages: 455

ISBN-13: 1783555149

DOWNLOAD EBOOK

Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.


Hands-on Supervised Learning with Python

Hands-on Supervised Learning with Python

Author: Gnana Lakshmi T C

Publisher: BPB Publications

Published: 2021-01-06

Total Pages: 382

ISBN-13: 9389328977

DOWNLOAD EBOOK

Hands-On ML problem solving and creating solutions using Python KEY FEATURES _Introduction to Python Programming _Python for Machine Learning _Introduction to Machine Learning _Introduction to Predictive Modelling, Supervised and Unsupervised Algorithms _Linear Regression, Logistic Regression and Support Vector MachinesÊ DESCRIPTIONÊ You will learn about the fundamentals of Machine Learning and Python programming post, which you will be introduced to predictive modelling and the different methodologies in predictive modelling. You will be introduced to Supervised Learning algorithms and Unsupervised Learning algorithms and the difference between them.Ê We will focus on learning supervised machine learning algorithms covering Linear Regression, Logistic Regression, Support Vector Machines, Decision Trees and Artificial Neural Networks. For each of these algorithms, you will work hands-on with open-source datasets and use python programming to program the machine learning algorithms. You will learn about cleaning the data and optimizing the features to get the best results out of your machine learning model. You will learn about the various parameters that determine the accuracy of your model and how you can tune your model based on the reflection of these parameters. WHAT WILL YOU LEARN _Get a clear vision of what is Machine Learning and get familiar with the foundation principles of Machine learning. _Understand the Python language-specific libraries available for Machine learning and be able to work with those libraries. _Explore the different Supervised Learning based algorithms in Machine Learning and know how to implement them when a real-time use case is presented to you. _Have hands-on with Data Exploration, Data Cleaning, Data Preprocessing and Model implementation. _Get to know the basics of Deep Learning and some interesting algorithms in this space. _Choose the right model based on your problem statement and work with EDA techniques to get good accuracy on your model WHO THIS BOOK IS FOR This book is for anyone interested in understanding Machine Learning. Beginners, Machine Learning Engineers and Data Scientists who want to get familiar with Supervised Learning algorithms will find this book helpful. TABLE OF CONTENTS Ê1. ÊIntroduction to Python Programming Ê2. Python for Machine LearningÊÊÊÊÊ Ê3.Ê Introduction to Machine LearningÊÊÊÊÊÊÊÊÊ Ê4. Supervised Learning and Unsupervised LearningÊÊÊÊÊÊÊÊÊ Ê5. Linear Regression: A Hands-on guideÊÊÊ Ê6. Logistic Regression Ð An Introduction Ê7. A sneak peek into the working of Support Vector machines(SVM)ÊÊÊÊÊÊ Ê8. Decision Trees Ê9. Random Forests Ê10. ÊTime Series models in Machine Learning Ê11.Ê Introduction to Neural Networks Ê12. ÊÊÊRecurrent Neural Networks Ê13. ÊÊÊConvolutional Neural Networks Ê14. ÊÊÊPerformance Metrics Ê15. ÊÊÊIntroduction to Design Thinking Ê16. Ê Design Thinking Case Study