Gauge Theories of the Strong, Weak, and Electromagnetic Interactions

Gauge Theories of the Strong, Weak, and Electromagnetic Interactions

Author: Chris Quigg

Publisher: Princeton University Press

Published: 2013-09-22

Total Pages: 497

ISBN-13: 1400848229

DOWNLOAD EBOOK

A thoroughly revised edition of a landmark textbook on gauge theories and their applications to particle physics This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature—quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies


Gauge Theories of the Strong, Weak, and Electromagnetic Interactions

Gauge Theories of the Strong, Weak, and Electromagnetic Interactions

Author: Chris Quigg

Publisher: Princeton University Press

Published: 2013-09-23

Total Pages: 496

ISBN-13: 0691135487

DOWNLOAD EBOOK

A thoroughly revised edition of a landmark textbook on gauge theories and their applications to particle physics This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature—quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies


Gauge Theory of Weak Interactions

Gauge Theory of Weak Interactions

Author: Walter Greiner

Publisher: Springer Science & Business Media

Published: 2009

Total Pages: 419

ISBN-13: 3540879242

DOWNLOAD EBOOK

Gauge Theory of Weak Interactions treats the unification of electromagnetic and weak interactions and considers related phenomena. First, the Fermi theory of beta decay is presented, followed by a discussion of parity violation, clarifying the importance of symmetries. Then the concept of a spontaneously broken gauge theory is introduced, and all necessary mathematical tools are carefully developed. The "standard model" of unified electroweak interactions is thoroughly discussed including current developments. The final chapter contains an introduction to unified theories of strong and electroweak interactions. Numerous solved examples and problems make this volume uniquely suited as a text for an advanced course. Thisfourth edition has been carefully revised.


Gauge Theories of the Strong and Electroweak Interaction

Gauge Theories of the Strong and Electroweak Interaction

Author: Manfred Böhm

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 796

ISBN-13: 3322801608

DOWNLOAD EBOOK

This textbook gives a comprehensive summary of the gauge theories of the fundamental interactions. The authors stress the intimate connection between the basic experimental facts and the formulation of gauge theories of the strong and electroweak interaction. The concepts and technical tools of quantum field theory are presented. They are used to derive precision results of quantum chromodynamics and the standard model of the electroweak interaction of experiments in elementary particle physics. The book includes the latest experimental results and presents the actual status of the theory.


Lattice Gauge Theories: An Introduction

Lattice Gauge Theories: An Introduction

Author: Heinz J Rothe

Publisher: World Scientific

Published: 1992-01-29

Total Pages: 397

ISBN-13: 9814602302

DOWNLOAD EBOOK

This book introduces a large number of topics in lattice gauge theories, including analytical as well as numerical methods. It provides young physicists with the theoretical background and basic computational tools in order to be able to follow the extensive literature on the subject, and to carry out research on their own. Whenever possible, the basic ideas and technical inputs are demonstrated in simple examples, so as to avoid diverting the readers' attention from the main line of thought. Sufficient technical details are however given so that he can fill in the remaining details with the help of the cited literature without too much effort.This volume is designed for graduate students in theoretical elementary particle physics or statistical mechanics with a basic knowledge in Quantum Field Theory.


Gauge Field Theories

Gauge Field Theories

Author: Mike Guidry

Publisher: John Wiley & Sons

Published: 2008-07-11

Total Pages: 620

ISBN-13: 3527617361

DOWNLOAD EBOOK

Acquaints readers with the main concepts and literature of elementary particle physics and quantum field theory. In particular, the book is concerned with the elaboration of gauge field theories in nuclear physics; the possibility of creating fundamental new states of matter such as an extended quark-gluon plasma in ultra-relativistic heavy ion collisions; and the relation of gauge theories to the creation and evolution of the universe. Divided into three parts, it opens with an introduction to the general principles of relativistic quantum field theory followed by the essential ingredients of gauge fields for weak and electromagnetic interactions, quantum chromodynamics and strong interactions. The third part is concerned with the interface between modern elementary particle physics and "applied disciplines" such as nuclear physics, astrophysics and cosmology. Includes references and numerous exercises.


The Biggest Ideas in the Universe

The Biggest Ideas in the Universe

Author: Sean Carroll

Publisher: Penguin

Published: 2022-09-20

Total Pages: 305

ISBN-13: 0593186583

DOWNLOAD EBOOK

INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.


Gauge Theory of Elementary Particle Physics

Gauge Theory of Elementary Particle Physics

Author: Ta-Pei Cheng

Publisher: Oxford University Press

Published: 1994-08-02

Total Pages: 549

ISBN-13: 0192652249

DOWNLOAD EBOOK

This is a practical introduction to the principal ideas in gauge theory and their applications to elementary particle physics. It explains technique and methodology with simple exposition backed up by many illustrative examples. Derivations, some of well known results, are presented in sufficient detail to make the text accessible to readers entering the field for the first time. The book focuses on the strong interaction theory of quantum chromodynamics and the electroweak interaction theory of Glashow, Weinberg, and Salam, as well as the grand unification theory, exemplified by the simplest SU(5) model. Not intended as an exhaustive survey, the book nevertheless provides the general background necessary for a serious student who wishes to specialize in the field of elementary particle theory. Physicists with an interest in general aspects of gauge theory will also find the book highly useful.


An Informal Introduction to Gauge Field Theories

An Informal Introduction to Gauge Field Theories

Author: Ian J. R. Aitchison

Publisher: Cambridge University Press

Published: 2007-09-27

Total Pages: 192

ISBN-13: 9780521039543

DOWNLOAD EBOOK

Four forces are dominant in physics: gravity, electromagnetism and the weak and strong nuclear forces. Quantum electrodynamics - the highly successful theory of the electromagnetic interaction - is a gauge field theory. In this short book Dr Aitchison gives an introduction to these theories, a knowledge of which is essential in understanding modern particle physics.


The Dawning of Gauge Theory

The Dawning of Gauge Theory

Author: Lochlainn O'Raifeartaigh

Publisher: Princeton University Press

Published: 2020-06-30

Total Pages:

ISBN-13: 0691215111

DOWNLOAD EBOOK

During the course of this century, gauge invariance has slowly emerged from being an incidental symmetry of electromagnetism to being a fundamental geometrical principle underlying the four known fundamental physical interactions. The development has been in two stages. In the first stage (1916-1956) the geometrical significance of gauge-invariance gradually came to be appreciated and the original abelian gauge-invariance of electromagnetism was generalized to non-abelian gauge invariance. In the second stage (1960-1975) it was found that, contrary to first appearances, the non-abelian gauge-theories provided exactly the framework that was needed to describe the nuclear interactions (both weak and strong) and thus provided a universal framework for describing all known fundamental interactions. In this work, Lochlainn O'Raifeartaigh describes the former phase. O'Raifeartaigh first illustrates how gravitational theory and quantum mechanics played crucial roles in the reassessment of gauge theory as a geometric principle and as a framework for describing both electromagnetism and gravitation. He then describes how the abelian electromagnetic gauge-theory was generalized to its present non-abelian form. The development is illustrated by including a selection of relevant articles, many of them appearing here for the first time in English, notably by Weyl, Schrodinger, Klein, and London in the pre-war years, and by Pauli, Shaw, Yang-Mills, and Utiyama after the war. The articles illustrate that the reassessment of gauge-theory, due in a large measure to Weyl, constituted a major philosophical as well as technical advance.