Introduction to Enumerative and Analytic Combinatorics

Introduction to Enumerative and Analytic Combinatorics

Author: Miklos Bona

Publisher: CRC Press

Published: 2015-09-18

Total Pages: 555

ISBN-13: 1482249103

DOWNLOAD EBOOK

Introduction to Enumerative and Analytic Combinatorics fills the gap between introductory texts in discrete mathematics and advanced graduate texts in enumerative combinatorics. The book first deals with basic counting principles, compositions and partitions, and generating functions. It then focuses on the structure of permutations, graph enumerat


Analytic Combinatorics

Analytic Combinatorics

Author: Philippe Flajolet

Publisher: Cambridge University Press

Published: 2009-01-15

Total Pages: 825

ISBN-13: 1139477161

DOWNLOAD EBOOK

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.


Analytic Combinatorics in Several Variables

Analytic Combinatorics in Several Variables

Author: Robin Pemantle

Publisher: Cambridge University Press

Published: 2013-05-31

Total Pages: 395

ISBN-13: 1107031575

DOWNLOAD EBOOK

Aimed at graduate students and researchers in enumerative combinatorics, this book is the first to treat the analytic aspects of combinatorial enumeration from a multivariate perspective.


Introduction to Enumerative Combinatorics

Introduction to Enumerative Combinatorics

Author: Miklós Bóna

Publisher: McGraw-Hill Science/Engineering/Math

Published: 2007

Total Pages: 552

ISBN-13:

DOWNLOAD EBOOK

Written by one of the leading authors and researchers in the field, this comprehensive modern text offers a strong focus on enumeration, a vitally important area in introductory combinatorics crucial for further study in the field. Miklós Bóna's text fills the gap between introductory textbooks in discrete mathematics and advanced graduate textbooks in enumerative combinatorics, and is one of the very first intermediate-level books to focus on enumerative combinatorics. The text can be used for an advanced undergraduate course by thoroughly covering the chapters in Part I on basic enumeration and by selecting a few special topics, or for an introductory graduate course by concentrating on the main areas of enumeration discussed in Part II. The special topics of Part III make the book suitable for a reading course. This text is part of the Walter Rudin Student Series in Advanced Mathematics.


An Invitation to Analytic Combinatorics

An Invitation to Analytic Combinatorics

Author: Stephen Melczer

Publisher: Springer Nature

Published: 2020-12-22

Total Pages: 418

ISBN-13: 3030670805

DOWNLOAD EBOOK

This book uses new mathematical tools to examine broad computability and complexity questions in enumerative combinatorics, with applications to other areas of mathematics, theoretical computer science, and physics. A focus on effective algorithms leads to the development of computer algebra software of use to researchers in these domains. After a survey of current results and open problems on decidability in enumerative combinatorics, the text shows how the cutting edge of this research is the new domain of Analytic Combinatorics in Several Variables (ACSV). The remaining chapters of the text alternate between a pedagogical development of the theory, applications (including the resolution by this author of conjectures in lattice path enumeration which resisted several other approaches), and the development of algorithms. The final chapters in the text show, through examples and general theory, how results from stratified Morse theory can help refine some of these computability questions. Complementing the written presentation are over 50 worksheets for the SageMath and Maple computer algebra systems working through examples in the text.


An Introduction to Enumeration

An Introduction to Enumeration

Author: Alan Camina

Publisher: Springer Science & Business Media

Published: 2011-05-16

Total Pages: 239

ISBN-13: 0857296000

DOWNLOAD EBOOK

Written for students taking a second or third year undergraduate course in mathematics or computer science, this book is the ideal companion to a course in enumeration. Enumeration is a branch of combinatorics where the fundamental subject matter is numerous methods of pattern formation and counting. Introduction to Enumeration provides a comprehensive and practical introduction to this subject giving a clear account of fundamental results and a thorough grounding in the use of powerful techniques and tools. Two major themes run in parallel through the book, generating functions and group theory. The former theme takes enumerative sequences and then uses analytic tools to discover how they are made up. Group theory provides a concise introduction to groups and illustrates how the theory can be used to count the number of symmetries a particular object has. These enrich and extend basic group ideas and techniques. The authors present their material through examples that are carefully chosen to establish key results in a natural setting. The aim is to progressively build fundamental theorems and techniques. This development is interspersed with exercises that consolidate ideas and build confidence. Some exercises are linked to particular sections while others range across a complete chapter. Throughout, there is an attempt to present key enumerative ideas in a graphic way, using diagrams to make them immediately accessible. The development assumes some basic group theory, a familiarity with analytic functions and their power series expansion along with some basic linear algebra.


Handbook of Enumerative Combinatorics

Handbook of Enumerative Combinatorics

Author: Miklos Bona

Publisher: CRC Press

Published: 2015-03-24

Total Pages: 1073

ISBN-13: 1482220865

DOWNLOAD EBOOK

Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklos Bona of the University of Florida where he


A Course in Enumeration

A Course in Enumeration

Author: Martin Aigner

Publisher: Springer Science & Business Media

Published: 2007-06-28

Total Pages: 568

ISBN-13: 3540390359

DOWNLOAD EBOOK

Combinatorial enumeration is a readily accessible subject full of easily stated, but sometimes tantalizingly difficult problems. This book leads the reader in a leisurely way from basic notions of combinatorial enumeration to a variety of topics, ranging from algebra to statistical physics. The book is organized in three parts: Basics, Methods, and Topics. The aim is to introduce readers to a fascinating field, and to offer a sophisticated source of information for professional mathematicians desiring to learn more. There are 666 exercises, and every chapter ends with a highlight section, discussing in detail a particularly beautiful or famous result.


Combinatorics: The Art of Counting

Combinatorics: The Art of Counting

Author: Bruce E. Sagan

Publisher: American Mathematical Soc.

Published: 2020-10-16

Total Pages: 304

ISBN-13: 1470460327

DOWNLOAD EBOOK

This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.