Computational Thinking

Computational Thinking

Author: Peter J. Denning

Publisher: MIT Press

Published: 2019-05-14

Total Pages: 266

ISBN-13: 0262353423

DOWNLOAD EBOOK

This pocket-sized introduction to computational thinking and problem-solving traces its genealogy centuries before the digital computer. A few decades into the digital era, scientists discovered that thinking in terms of computation made possible an entirely new way of organizing scientific investigation. Eventually, every field had a computational branch: computational physics, computational biology, computational sociology. More recently, “computational thinking” has become part of the K–12 curriculum. But what is computational thinking? This volume in the MIT Press Essential Knowledge series offers an accessible overview—tracing a genealogy that begins centuries before digital computers and portraying computational thinking as the pioneers of computing have described it. The authors explain that computational thinking (CT) is not a set of concepts for programming; it is a way of thinking that is honed through practice: the mental skills for designing computations to do jobs for us, and for explaining and interpreting the world as a complex of information processes. Mathematically trained experts (known as “computers”) who performed complex calculations as teams engaged in CT long before electronic computers. In each chapter, the author identify different dimensions of today's highly developed CT: • Computational Methods • Computing Machines • Computing Education • Software Engineering • Computational Science • Design Along the way, they debunk inflated claims for CT and computation while making clear the power of CT in all its complexity and multiplicity.


Introduction to Computational Thinking

Introduction to Computational Thinking

Author: Thomas Mailund

Publisher: Apress

Published: 2021-07-31

Total Pages: 657

ISBN-13: 9781484270769

DOWNLOAD EBOOK

Learn approaches of computational thinking and the art of designing algorithms. Most of the algorithms you will see in this book are used in almost all software that runs on your computer. Learning how to program can be very rewarding. It is a special feeling to seeing a computer translate your thoughts into actions and see it solve your problems for you. To get to that point, however, you must learn to think about computations in a new way—you must learn computational thinking. This book begins by discussing models of the world and how to formalize problems. This leads onto a definition of computational thinking and putting computational thinking in a broader context. The practical coding in the book is carried out in Python; you’ll get an introduction to Python programming, including how to set up your development environment. What You Will Learn Think in a computational way Acquire general techniques for problem solving See general and concrete algorithmic techniques Program solutions that are both computationally efficient and maintainable Who This Book Is For Those new to programming and computer science who are interested in learning how to program algorithms and working with other computational aspects of programming.


Computational Thinking and Coding for Every Student

Computational Thinking and Coding for Every Student

Author: Jane Krauss

Publisher: Corwin Press

Published: 2016-10-28

Total Pages: 212

ISBN-13: 1506341292

DOWNLOAD EBOOK

Empower tomorrow’s tech innovators Our students are avid users and consumers of technology. Isn’t it time that they see themselves as the next technological innovators, too? Computational Thinking and Coding for Every Student is the beginner’s guide for K-12 educators who want to learn to integrate the basics of computer science into their curriculum. Readers will find Practical strategies for teaching computational thinking and the beginning steps to introduce coding at any grade level, across disciplines, and during out-of-school time Instruction-ready lessons and activities for every grade Specific guidance for designing a learning pathway for elementary, middle, or high school students Justification for making coding and computer science accessible to all A glossary with definitions of key computer science terms, a discussion guide with tips for making the most of the book, and companion website with videos, activities, and other resources Momentum for computer science education is growing as educators and parents realize how fundamental computing has become for the jobs of the future. This book is for educators who see all of their students as creative thinkers and active contributors to tomorrow’s innovations. "Kiki Prottsman and Jane Krauss have been at the forefront of the rising popularity of computer science and are experts in the issues that the field faces, such as equity and diversity. In this book, they’ve condensed years of research and practitioner experience into an easy to read narrative about what computer science is, why it is important, and how to teach it to a variety of audiences. Their ideas aren’t just good, they are research-based and have been in practice in thousands of classrooms...So to the hundreds and thousands of teachers who are considering, learning, or actively teaching computer science—this book is well worth your time." Pat Yongpradit Chief Academic Officer, Code.org


Introduction to Computation and Programming Using Python, second edition

Introduction to Computation and Programming Using Python, second edition

Author: John V. Guttag

Publisher: MIT Press

Published: 2016-08-12

Total Pages: 466

ISBN-13: 0262529629

DOWNLOAD EBOOK

The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization. This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics.


Computational Thinking Education

Computational Thinking Education

Author: Siu-Cheung Kong

Publisher: Springer

Published: 2019-07-04

Total Pages: 377

ISBN-13: 9811365288

DOWNLOAD EBOOK

This This book is open access under a CC BY 4.0 license.This book offers a comprehensive guide, covering every important aspect of computational thinking education. It provides an in-depth discussion of computational thinking, including the notion of perceiving computational thinking practices as ways of mapping models from the abstraction of data and process structures to natural phenomena. Further, it explores how computational thinking education is implemented in different regions, and how computational thinking is being integrated into subject learning in K-12 education. In closing, it discusses computational thinking from the perspective of STEM education, the use of video games to teach computational thinking, and how computational thinking is helping to transform the quality of the workforce in the textile and apparel industry.


Computational Thinking Education in K-12

Computational Thinking Education in K-12

Author: Siu-Cheung Kong

Publisher: MIT Press

Published: 2022-05-03

Total Pages: 285

ISBN-13: 0262543478

DOWNLOAD EBOOK

A guide to computational thinking education, with a focus on artificial intelligence literacy and the integration of computing and physical objects. Computing has become an essential part of today’s primary and secondary school curricula. In recent years, K–12 computer education has shifted from computer science itself to the broader perspective of computational thinking (CT), which is less about technology than a way of thinking and solving problems—“a fundamental skill for everyone, not just computer scientists,” in the words of Jeanette Wing, author of a foundational article on CT. This volume introduces a variety of approaches to CT in K–12 education, offering a wide range of international perspectives that focus on artificial intelligence (AI) literacy and the integration of computing and physical objects. The book first offers an overview of CT and its importance in K–12 education, covering such topics as the rationale for teaching CT; programming as a general problem-solving skill; and the “phenomenon-based learning” approach. It then addresses the educational implications of the explosion in AI research, discussing, among other things, the importance of teaching children to be conscientious designers and consumers of AI. Finally, the book examines the increasing influence of physical devices in CT education, considering the learning opportunities offered by robotics. Contributors Harold Abelson, Cynthia Breazeal, Karen Brennan, Michael E. Caspersen, Christian Dindler, Daniella DiPaola, Nardie Fanchamps, Christina Gardner-McCune, Mark Guzdial, Kai Hakkarainen, Fredrik Heintz, Paul Hennissen, H. Ulrich Hoppe, Ole Sejer Iversen, Siu-Cheung Kong, Wai-Ying Kwok, Sven Manske, Jesús Moreno-León, Blakeley H. Payne, Sini Riikonen, Gregorio Robles, Marcos Román-González, Pirita Seitamaa-Hakkarainen, Ju-Ling Shih, Pasi Silander, Lou Slangen, Rachel Charlotte Smith, Marcus Specht, Florence R. Sullivan, David S. Touretzky


How to Speak Machine

How to Speak Machine

Author: John Maeda

Publisher: Penguin

Published: 2019-11-12

Total Pages: 242

ISBN-13: 0399564438

DOWNLOAD EBOOK

Visionary designer and technologist John Maeda defines the fundamental laws of how computers think, and why you should care even if you aren't a programmer. "Maeda is to design what Warren Buffett is to finance." --Wired John Maeda is one of the world's preeminent interdisciplinary thinkers on technology and design. In How to Speak Machine, he offers a set of simple laws that govern not only the computers of today, but the unimaginable machines of the future. Technology is already more powerful than we can comprehend, and getting more powerful at an exponential pace. Once set in motion, algorithms never tire. And when a program's size, speed, and tirelessness combine with its ability to learn and transform itself, the outcome can be unpredictable and dangerous. Take the seemingly instant transformation of Microsoft's chatbot Tay into a hate-spewing racist, or how crime-predicting algorithms reinforce racial bias. How to Speak Machine provides a coherent framework for today's product designers, business leaders, and policymakers to grasp this brave new world. Drawing on his wide-ranging experience from engineering to computer science to design, Maeda shows how businesses and individuals can identify opportunities afforded by technology to make world-changing and inclusive products--while avoiding the pitfalls inherent to the medium.


Computational Thinking: A Perspective on Computer Science

Computational Thinking: A Perspective on Computer Science

Author: Zhiwei Xu

Publisher: Springer Nature

Published: 2022-01-01

Total Pages: 338

ISBN-13: 9811638489

DOWNLOAD EBOOK

This textbook is intended as a textbook for one-semester, introductory computer science courses aimed at undergraduate students from all disciplines. Self-contained and with no prerequisites, it focuses on elementary knowledge and thinking models. The content has been tested in university classrooms for over six years, and has been used in summer schools to train university and high-school teachers on teaching introductory computer science courses using computational thinking. This book introduces computer science from a computational thinking perspective. In computer science the way of thinking is characterized by three external and eight internal features, including automatic execution, bit-accuracy and abstraction. The book is divided into chapters on logic thinking, algorithmic thinking, systems thinking, and network thinking. It also covers societal impact and responsible computing material – from ICT industry to digital economy, from the wonder of exponentiation to wonder of cyberspace, and from code of conduct to best practices for independent work. The book’s structure encourages active, hands-on learning using the pedagogic tool Bloom's taxonomy to create computational solutions to over 200 problems of varying difficulty. Students solve problems using a combination of thought experiment, programming, and written methods. Only 300 lines of code in total are required to solve most programming problems in this book.


No Fear Coding

No Fear Coding

Author: Heidi Williams

Publisher: Computational Thinking and Cod

Published: 2017

Total Pages: 176

ISBN-13: 9781564843876

DOWNLOAD EBOOK

Coding and computational thinking (the ability to think like a computer) are among the skills that will serve students well in the future. Coding goes beyond websites and software - it's an essential component in finding solutions to everyday problems. Computational thinking has many applications beyond the computer lab or math class -it teaches reasoning, creativity and expression, and is an innovative way to demonstrate content knowledge and see mathematical processes in action. No-Fear Coding shows K-5 educators how to bring coding into their curriculum by embedding computational thinking skills into activities for every content area. At the same time, embedding these skills helps students prepare for coding in the middle grades as they build their knowledge. To help teachers easily and effectively introduce coding, the book features: Classroom-tested lessons and activities designed for skills progression. Ready-to-implement coding exercises that can be incorporated across the curriculum. Alignment to ISTE and Computer Science Teachers Association (CSTA) standards. Case studies and explorations of technology tools and resources to teach coding.


Research Anthology on Computational Thinking, Programming, and Robotics in the Classroom

Research Anthology on Computational Thinking, Programming, and Robotics in the Classroom

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2021-07-16

Total Pages: 969

ISBN-13: 1668424126

DOWNLOAD EBOOK

The education system is constantly growing and developing as more ways to teach and learn are implemented into the classroom. Recently, there has been a growing interest in teaching computational thinking with schools all over the world introducing it to the curriculum due to its ability to allow students to become proficient at problem solving using logic, an essential life skill. In order to provide the best education possible, it is imperative that computational thinking strategies, along with programming skills and the use of robotics in the classroom, be implemented in order for students to achieve maximum thought processing skills and computer competencies. The Research Anthology on Computational Thinking, Programming, and Robotics in the Classroom is an all-encompassing reference book that discusses how computational thinking, programming, and robotics can be used in education as well as the benefits and difficulties of implementing these elements into the classroom. The book includes strategies for preparing educators to teach computational thinking in the classroom as well as design techniques for incorporating these practices into various levels of school curriculum and within a variety of subjects. Covering topics ranging from decomposition to robot learning, this book is ideal for educators, computer scientists, administrators, academicians, students, and anyone interested in learning more about how computational thinking, programming, and robotics can change the current education system.