Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
An introduction into the art and science of measuring and predicting airplane performance, ""Introduction to Flight Testing and Applied Aerodynamics"" will benefit students, homebuilders, pilots, and engineers in learning how to collect and analyze data relevant to the takeoff, climb, cruise, handling qualities, descent, and landing of an aircraft. This textbook presents a basic and concise analysis of airplane performance, stability, and control. Basic algebra, trigonometry, and some calculus are used. Topics discussed include: Engine and propeller performance; Estimation of drag; Airplane dynamics; Wing spanwise lift distributions; Flight experimentation; Airspeed calibration; Takeoff performance; Climb performance; and, Dynamic and static stability. Special features: examples containing student-obtained data about specific airplanes and engines; simple experiments that determine an airplane's performance and handling qualities; and, end-of-chapter problems (with answers supplied in an appendix).
Aircraft Design Concepts: An Introductory Course introduces the principles of aircraft design through a quantitative approach developed from the author’s extensive experience in teaching aircraft design. Building on prerequisite courses, the text develops basic design skills and methodologies, while also explaining the underlying physics. The book uses a historical approach to examine a wide range of aircraft types and their design. Numerous charts, photos, and illustrations are provided for in-depth view of aeronautical engineering. It addresses conventional tail-aft monoplanes, "flying-wing", biplane, and canard configurations. Providing detailed analysis of propeller performance, the book starts with simple blade-element theory and builds to the Weick method. Written for senior undergraduate and graduate students taking a single-semester course on Aircraft Design or Aircraft Performance, the book imparts both the technical knowledge and creativity needed for aircraft design.
Blending history and biography with discussion of engineering concepts, and the development of flight through this perspective, this text includes new content covering the last days of the Concorde, the centennial of the Wright Brothers' flight, and the Mariner and Voyager 2 missions.