Interpreting and Comparing Effects in Logistic, Probit and Logit Regression

Interpreting and Comparing Effects in Logistic, Probit and Logit Regression

Author: Jacques A. P. Hagenaars

Publisher: SAGE Publications

Published: 2024-02-27

Total Pages: 205

ISBN-13: 1544364008

DOWNLOAD EBOOK

Interpreting and Comparing Effects in Logistic, Probit and Logit Regression shows applied researchers how to compare coefficient estimates from regression models for categorical dependent variables in typical research situations. It presents a practical, unified treatment of these problems, and considers the advantages and disadvantages of each approach, and when to use them.


Interpreting and Comparing Effects in Logistic, Probit, and Logit Regression

Interpreting and Comparing Effects in Logistic, Probit, and Logit Regression

Author: Jacques A. P. Hagenaars

Publisher: SAGE Publications

Published: 2024-01-16

Total Pages: 174

ISBN-13: 1544363990

DOWNLOAD EBOOK

Log-linear, logit and logistic regression models are the most common ways of analyzing data when (at least) the dependent variable is categorical. This volume shows how to compare coefficient estimates from regression models for categorical dependent variables in three typical research situations: (i) within one equation, (ii) between identical equations estimated in different subgroups, and (iii) between nested equations. Each of these three kinds of comparisons brings along its own particular form of comparison problems. Further, in all three areas, the precise nature of comparison problems in logistic regression depends on how the logistic regression model is looked at and how the effects of the independent variables are computed. This volume presents a practical, unified treatment of these problems, and considers the advantages and disadvantages of each approach, and when to use them, so that applied researchers can make the best choice related to their research problem. The techniques are illustrated with data from simulation experiments and from publicly available surveys. The datasets, along with Stata syntax, are available on a companion website at: https://study.sagepub.com/researchmethods/qass/hagenaars-interpreting-effects.


Linear Probability, Logit, and Probit Models

Linear Probability, Logit, and Probit Models

Author: John H. Aldrich

Publisher: SAGE

Published: 1984-11

Total Pages: 100

ISBN-13: 9780803921337

DOWNLOAD EBOOK

After showing why ordinary regression analysis is not appropriate for investigating dichotomous or otherwise 'limited' dependent variables, this volume examines three techniques which are well suited for such data. It reviews the linear probability model and discusses alternative specifications of non-linear models.


Interpreting Probability Models

Interpreting Probability Models

Author: Tim Futing Liao

Publisher: SAGE

Published: 1994-06-30

Total Pages: 100

ISBN-13: 9780803949997

DOWNLOAD EBOOK

What is the probability that something will occur, and how is that probability altered by a change in an independent variable? To answer these questions, Tim Futing Liao introduces a systematic way of interpreting commonly used probability models. Since much of what social scientists study is measured in noncontinuous ways and, therefore, cannot be analyzed using a classical regression model, it becomes necessary to model the likelihood that an event will occur. This book explores these models first by reviewing each probability model and then by presenting a systematic way for interpreting the results from each.


Logit and Probit

Logit and Probit

Author: Vani K. Borooah

Publisher: SAGE

Published: 2002

Total Pages: 108

ISBN-13: 9780761922421

DOWNLOAD EBOOK

Many problems in the social sciences are amenable to analysis using the analytical tools of logit and probit models. This book explains what ordered and multinomial models are and also shows how to apply them to analysing issues in the social sciences.


Interpreting and Comparing Effects in Logistic, Probit and Logit Regression

Interpreting and Comparing Effects in Logistic, Probit and Logit Regression

Author: Jacques A P Hagenaars

Publisher: Sage Publications, Incorporated

Published: 2024-03-05

Total Pages: 0

ISBN-13: 9781544364018

DOWNLOAD EBOOK

Interpreting Effects in Logistic Regression and Logit Models shows how to compare coefficient estimates from regression models for categorical dependent variables in three typical research situations: (i) within one model, (ii) between identical models estimated in different subgroups, and (iii) between nested models. Additionally, this volume presents a practical, unified treatment of comparison problems and considers the advantages and disadvantages of each approach and when to use them.


Regression Models for Categorical and Limited Dependent Variables

Regression Models for Categorical and Limited Dependent Variables

Author: J. Scott Long

Publisher: SAGE

Published: 1997-01-09

Total Pages: 334

ISBN-13: 9780803973749

DOWNLOAD EBOOK

Evaluates the most useful models for categorical and limited dependent variables (CLDVs), emphasizing the links among models and applying common methods of derivation, interpretation, and testing. The author also explains how models relate to linear regression models whenever possible. Annotation c.


Discrete Choice Methods with Simulation

Discrete Choice Methods with Simulation

Author: Kenneth Train

Publisher: Cambridge University Press

Published: 2009-07-06

Total Pages: 399

ISBN-13: 0521766559

DOWNLOAD EBOOK

This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.


Best Practices in Logistic Regression

Best Practices in Logistic Regression

Author: Jason W. Osborne

Publisher: SAGE Publications

Published: 2014-02-26

Total Pages: 489

ISBN-13: 1483312097

DOWNLOAD EBOOK

Jason W. Osborne’s Best Practices in Logistic Regression provides students with an accessible, applied approach that communicates logistic regression in clear and concise terms. The book effectively leverages readers’ basic intuitive understanding of simple and multiple regression to guide them into a sophisticated mastery of logistic regression. Osborne’s applied approach offers students and instructors a clear perspective, elucidated through practical and engaging tools that encourage student comprehension.