This book covers how Internet of Things (IoT) has a role in shaping the future of our communities. The author shows how the research and education ecosystem promoting impactful solutions-oriented science can help citizenry, government, industry, and other stakeholders to work collaboratively in order to make informed, socially-responsible, science-based decisions. Accordingly, he shows how communities can address complex, interconnected socio-environmental challenges. This book addresses the key inter-related challenges in areas such as the environment, climate change, mining, energy, agro-economic, water, and forestry that are limiting the development of a sustainable and resilient society -- each of these challenges are tied back to IoT based solutions. Presents research into sustainable IoT with respect to wireless communications, sensing, and systems Provides coverage of IoT technologies in sustainability, health, agriculture, climate change, mining, energy, water management, and forestry Relevant for academics, researchers, policy makers, city planners and managers, technicians, and industry professionals in IoT and sustainability
This book provides solution for challenges facing engineers in urban environments looking towards smart development and IoT. The authors address the challenges faced in developing smart applications along with the solutions. Topics addressed include reliability, security and financial issues in relation to all the smart and sustainable development solutions discussed. The solutions they provide are affordable, resistive to threats, and provide high reliability. The book pertains to researchers, academics, professionals, and students. Provides solutions to urban sustainable development problems facing engineers in developing and developed countries Discusses results with industrial problems and current issues in smart city development Includes solutions that are reliable, secure and financially sound
This book is intended to help explore the field of smart sustainable cities in its complexity, heterogeneity, and breadth, the many faces of a topical subject of major importance for the future that encompasses so much of modern urban life in an increasingly computerized and urbanized world. Indeed, sustainable urban development is currently at the center of debate in light of several ICT visions becoming achievable and deployable computing paradigms, and shaping the way cities will evolve in the future and thus tackle complex challenges. This book integrates computer science, data science, complexity science, sustainability science, system thinking, and urban planning and design. As such, it contains innovative computer–based and data–analytic research on smart sustainable cities as complex and dynamic systems. It provides applied theoretical contributions fostering a better understanding of such systems and the synergistic relationships between the underlying physical and informational landscapes. It offers contributions pertaining to the ongoing development of computer–based and data science technologies for the processing, analysis, management, modeling, and simulation of big and context data and the associated applicability to urban systems that will advance different aspects of sustainability. This book seeks to explicitly bring together the smart city and sustainable city endeavors, and to focus on big data analytics and context-aware computing specifically. In doing so, it amalgamates the design concepts and planning principles of sustainable urban forms with the novel applications of ICT of ubiquitous computing to primarily advance sustainability. Its strength lies in combining big data and context–aware technologies and their novel applications for the sheer purpose of harnessing and leveraging the disruptive and synergetic effects of ICT on forms of city planning that are required for future forms of sustainable development. This is because the effects of such technologies reinforce one another as to their efforts for transforming urban life in a sustainable way by integrating data–centric and context–aware solutions for enhancing urban systems and facilitating coordination among urban domains. This timely and comprehensive book is aimed at a wide audience across science, academia industry, and policymaking. It provides the necessary material to inform relevant research communities of the state–of–the–art research and the latest development in the area of smart sustainable urban development, as well as a valuable reference for planners, designers, strategists, and ICT experts who are working towards the development and implementation of smart sustainable cities based on big data analytics and context–aware computing.
DIGITAL CITIES ROADMAP This book details applications of technology to efficient digital city infrastructure and its planning, including smart buildings. Rapid urbanization, demographic changes, environmental changes, and new technologies are changing the views of urban leaders on sustainability, as well as creating and providing public services to tackle these new dynamics. Sustainable development is an objective by which the processes of planning, implementing projects, and development is aimed at meeting the needs of modern communities without compromising the potential of future generations. The advent of Smart Cities is the answer to these problems. Digital Cities Roadmap provides an in-depth analysis of design technologies that lay a solid foundation for sustainable buildings. The book also highlights smart automation technologies that help save energy, as well as various performance indicators needed to make construction easier. The book aims to create a strong research community, to have a deep understanding and the latest knowledge in the field of energy and comfort, to offer solid ideas in the nearby future for sustainable and resilient buildings. These buildings will help the city grow as a smart city. The smart city has also a focus on low energy consumption, renewable energy, and a small carbon footprint. Audience The information provided in this book will be of value to researchers, academicians and industry professionals interested in IoT-based architecture and sustainable buildings, energy efficiency and various tools and methods used to develop green technologies for construction in smart cities.
Urban Systems Design: Creating Sustainable Smart Cities in the Internet of Things Era shows how to design, model and monitor smart communities using a distinctive IoT-based urban systems approach. Focusing on the essential dimensions that constitute smart communities energy, transport, urban form, and human comfort, this helpful guide explores how IoT-based sharing platforms can achieve greater community health and well-being based on relationship building, trust, and resilience. Uncovering the achievements of the most recent research on the potential of IoT and big data, this book shows how to identify, structure, measure and monitor multi-dimensional urban sustainability standards and progress. This thorough book demonstrates how to select a project, which technologies are most cost-effective, and their cost-benefit considerations. The book also illustrates the financial, institutional, policy and technological needs for the successful transition to smart cities, and concludes by discussing both the conventional and innovative regulatory instruments needed for a fast and smooth transition to smart, sustainable communities. - Provides operational case studies and best practices from cities throughout Europe, North America, Latin America, Asia, Australia, and Africa, providing instructive examples of the social, environmental, and economic aspects of "smartification - Reviews assessment and urban sustainability certification systems such as LEED, BREEAM, and CASBEE, examining how each addresses smart technologies criteria - Examines existing technologies for efficient energy management, including HEMS, BEMS, energy harvesting, electric vehicles, smart grids, and more
Efficient Single Board Computers (SBCs) and advanced VLSI systems have resulted in edge analytics and faster decision making. The QoS parameters like energy, delay, reliability, security, and throughput should be improved on seeking better intelligent expert systems. The resource constraints in the Edge devices, challenges the researchers to meet the required QoS. Since these devices and components work in a remote unattended environment, an optimum methodology to improve its lifetime has become mandatory. Continuous monitoring of events is mandatory to avoid tragic situations; it can only be enabled by providing high QoS. The applications of IoT in digital twin development, health care, traffic analysis, home surveillance, intelligent agriculture monitoring, defense and all common day to day activities have resulted in pioneering embedded devices, which can offer high computational facility without much latency and delay. The book address industrial problems in designing expert system and IoT applications. It provides novel survey and case study report on recent industrial approach towards Smart City development.
"The book outlines many current challenges to digital health-care adoption and how IoT and big data technologies can help promote digital health-care adoption and improve health-care efficiency, discussing how IoT, Big data, and Deep learning techniques can together help improve the adoption of smart health which will result in improved health-care delivery and access"--
This volume provides the most current research on smart cities. Specifically, it focuses on the economic development and sustainability of smart cities and examines how to transform older industrial cities into sustainable smart cities. It aims to identify the role of the following elements in the creation and management of smart cities:• Citizen participation and empowerment • Value creation mechanisms • Public administration• Quality of life and sustainability• Democracy• ICT• Private initiatives and entrepreneurship Regardless of their size, all cities are ultimately agglomerations of people and institutions. Agglomeration economies make it possible to attain minimum efficiencies of scale in the organization and delivery of services. However, the economic benefits do not constitute the main advantage of a city. A city’s status rests on three dimensions: (1) political impetus, which is the result of citizens’ participation and the public administration’s agenda; (2) applications derived from technological advances (especially in ICT); and (3) cooperation between public and private initiatives in business development and entrepreneurship. These three dimensions determine which resources are necessary to create smart cities. But a smart city, ideal in the way it channels and resolves technological, social and economic-growth issues, requires many additional elements to function at a high-performance level, such as culture (an environment that empowers and engages citizens) and physical infrastructure designed to foster competition and collaboration, encourage new ideas and actions, and set the stage for new business creation. Featuring contributions with models, tools and cases from around the world, this book will be a valuable resource for researchers, students, academics, professionals and policymakers interested in smart cities.
Recent advances in ICT have given rise to new socially disruptive technologies: AmI and the IoT, marking a major technological change which may lead to a drastic transformation of the technological ecosystem in all its complexity, as well as to a major alteration in technology use and thus daily living. Yet no work has systematically explored AmI and the IoT as advances in science and technology (S&T) and sociotechnical visions in light of their nature, underpinning, and practices along with their implications for individual and social wellbeing and for environmental health. AmI and the IoT raise new sets of questions: In what way can we conceptualize such technologies? How can we evaluate their benefits and risks? How should science–based technology and society’s politics relate? Are science-based technology and society converging in new ways? It is with such questions that this book is concerned. Positioned within the research field of Science and Technology Studies (STS), which encourages analyses whose approaches are drawn from a variety of disciplinary perspectives, this book amalgamates an investigation of AmI and the IoT technologies based on a unique approach to cross–disciplinary integration; their ethical, social, cultural, political, and environmental effects; and a philosophical analysis and evaluation of the implications of such effects. An interdisciplinary approach is indeed necessary to understand the complex issue of scientific and technological innovations that S&T are not the only driving forces of the modern, high–tech society, as well as to respond holistically, knowledgeably, reflectively, and critically to the most pressing issues and significant challenges of the modern world. This book is the first systematic study on how AmI and the IoT applications of scientific discovery link up with other developments in the spheres of the European society, including culture, politics, policy, ethics and ecological philosophy. It situates AmI and the IoT developments and innovations as modernist science–based technology enterprises in a volatile and tense relationship with an inherently contingent, heterogeneous, fractured, conflictual, plural, and reflexive postmodern social world. The issue’s topicality results in a book of interest to a wide readership in science, industry, politics, and policymaking, as well as of recommendation to anyone interested in learning the sociology, philosophy, and history of AmI and the IoT technologies, or to those who would like to better understand some of the ethical, environmental, social, cultural, and political dilemmas to what has been labeled the technologies of the 21st century.
Developing countries are persistently looking for efficient and cost-effective methods for transforming their communities into smart cities. Unfortunately, energy crises have increased in these regions due to a lack of awareness and proper utilization of technological methods. These communities must explore and implement innovative solutions in order to enhance citizen enrollment, quality of government, and city intelligence. IoT Architectures, Models, and Platforms for Smart City Applications provides emerging research exploring the theoretical and practical aspects of transforming cities into intelligent systems using IoT-based design models and sustainable development projects. This publication looks at how cities can be built as smart cities within limited resources and existing advanced technologies. Featuring coverage on a broad range of topics such as cloud computing, human machine interface, and ad hoc networks, this book is ideally designed for urban planners, engineers, IT specialists, computer engineering students, research scientists, academicians, technology developers, policymakers, researchers, and designers seeking current research on smart applications within urban development.