Curing is one of those activities that every civil engineer and construction worker has heard of, but in reality does not worry about much. In practice, curing is often low on the list of priorities on the construction site, particularly when budgets and timelines are under pressure. Yet the increasing demands being placed on concrete mixtures also
Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges contains lectures and papers presented at the Ninth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2018), held in Melbourne, Australia, 9-13 July 2018. This volume consists of a book of extended abstracts and a USB card containing the full papers of 393 contributions presented at IABMAS 2018, including the T.Y. Lin Lecture, 10 Keynote Lectures, and 382 technical papers from 40 countries. The contributions presented at IABMAS 2018 deal with the state of the art as well as emerging concepts and innovative applications related to the main aspects of bridge maintenance, safety, risk, management and life-cycle performance. Major topics include: new design methods, bridge codes, heavy vehicle and load models, bridge management systems, prediction of future traffic models, service life prediction, residual service life, sustainability and life-cycle assessments, maintenance strategies, bridge diagnostics, health monitoring, non-destructive testing, field testing, safety and serviceability, assessment and evaluation, damage identification, deterioration modelling, repair and retrofitting strategies, bridge reliability, fatigue and corrosion, extreme loads, advanced experimental simulations, and advanced computer simulations, among others. This volume provides both an up-to-date overview of the field of bridge engineering and significant contributions to the process of more rational decision-making on bridge maintenance, safety, risk, management and life-cycle performance of bridges for the purpose of enhancing the welfare of society. The Editors hope that these Proceedings will serve as a valuable reference to all concerned with bridge structure and infrastructure systems, including students, researchers and engineers from all areas of bridge engineering.
As of 2005, 23% of the bridges in the Kansas infrastructure are classified as structurally deficient or functionally obsolete according to the ASCE Infrastructure Report Card (ASCE, 2008). One alternative to replacing the entire bridge structure is replacing only the superstructure with lightweight concrete. This option is more economical for city, county, and state governments alike. Replacing the superstructure with lightweight concrete can oftentimes allow the bridge rating to be upgraded to higher load capacities or higher traffic volumes. Furthermore, lightweight concrete can be used initially in a bridge deck to provide reduced weight and a lower modulus of elasticity, therefore lower cracking potential. The Kansas Department of Transportation is interested in the potential benefits of using lightweight aggregate concrete in Kansas bridge decks and prestressed bridge girders. This research project used three types of lightweight aggregate to develop lightweight concrete mixtures for a bridge deck and for prestressed bridge girders. Two of the lightweight aggregates were expanded shale obtained locally from the Buildex Company. One deposit was located in Marquette, Kansas, and the other in New Market, Missouri. The third lightweight aggregate source was expanded slate obtained from the Stalite Company in North Carolina. Aggregate properties including absorption, gradation, and L.A. Abrasion were evaluated. Over 150 lightweight concrete mixtures were created and tested and several mix design variables such as water-to-cement ratio, cement content, and coarse-to-fine aggregate ratio were evaluated. From these results, optimized bridge deck and optimized prestressed concrete mixtures were developed for each type of lightweight aggregate. Special concerns for lightweight aggregate concrete are addressed. These optimized concrete mixtures were then tested for KDOT acceptability standards for the concrete properties of compressive strength, tensile strength, modulus of elasticity, freeze-thaw resistance, permeability, alkali-silica reactivity, drying shrinkage, and autogenous shrinkage. All concrete mixtures performed satisfactorily according to KDOT standards. In addition, an internal curing effect due to the moisture content of the lightweight aggregate was observed during the autogenous shrinkage test.
The traveling public has no patience for prolonged, high cost construction projects. This puts highway construction contractors under intense pressure to minimize traffic disruptions and construction cost. Actively promoted by the Federal Highway Administration, there are hundreds of accelerated bridge construction (ABC) construction programs in the United States, Europe and Japan. Accelerated Bridge Construction: Best Practices and Techniques provides a wide range of construction techniques, processes and technologies designed to maximize bridge construction or reconstruction operations while minimizing project delays and community disruption. - Describes design methods for accelerated bridge substructure construction; reducing foundation construction time and methods by using pile bents - Explains applications to steel bridges, temporary bridges in place of detours using quick erection and demolition - Covers design-build systems' boon to ABC; development of software; use of fiber reinforced polymer (FRP) - Includes applications to glulam and sawn lumber bridges, precast concrete bridges, precast joints details; use of lightweight aggregate concrete, aluminum and high-performance steel
TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 338: Thin and Ultra-Thin Whitetopping summarizes available information to document how state departments of transportation and others are currently using thin and ultra-thin whitetopping overlays among various pavement rehabilitation alternatives. The report covers all stages of the proper application of whitetopping overlays, including project selection, design, materials selection, construction, maintenance, and eventual rehabilitation or replacement.