Interference Alignment: A New Look at Signal Dimensions in a Communication Network provides both a tutorial and a survey of the state-of-art on the topic.
This book is unique in presenting channels, techniques and standards for the next generation of MIMO wireless networks. Through a unified framework, it emphasizes how propagation mechanisms impact the system performance under realistic power constraints. Combining a solid mathematical analysis with a physical and intuitive approach to space-time signal processing, the book progressively derives innovative designs for space-time coding and precoding as well as multi-user and multi-cell techniques, taking into consideration that MIMO channels are often far from ideal.Reflecting developments since the first edition was published, this book has been thoroughly revised, and now includes new sections and five new chapters, respectively dealing with receiver design, multi-user MIMO, multi-cell MIMO, MIMO implementation in standards, and MIMO system-level evaluation. - Extended introduction to multi-dimensional propagation, including polarization aspects - Detailed and comparative description of physical models and analytical representations of single- and multi-link MIMO channels, covering the latest standardized models - Thorough overview of space-time coding techniques, covering both classical and more recent schemes under information theory and error probability perspectives - Intuitive illustration of how real-world propagation affects the capacity and the error performance of MIMO transmission schemes - Detailed information theoretic analysis of multiple access, broadcast and interference channels - In-depth presentation of multi-user diversity, resource allocation and (non-)linear MU-MIMO precoding techniques with perfect and imperfect channel knowledge - Extensive coverage of cooperative multi-cell MIMO-OFDMA networks, including network resource allocation optimization, coordinated scheduling, beamforming and power control, interference alignment, joint processing, massive and network MIMO - Applications of MIMO and Coordinated Multi-Point (CoMP) in LTE, LTE-A and WiMAX - Theoretical derivations and results contrasted with practical system level evaluations highlighting the performance of single- and multi-cell MIMO techniques in realistic deployments
Learn about an information-theoretic approach to managing interference in future generation wireless networks. Focusing on cooperative schemes motivated by Coordinated Multi-Point (CoMP) technology, the book develops a robust theoretical framework for interference management that uses recent advancements in backhaul design, and practical pre-coding schemes based on local cooperation, to deliver the increased speed and reliability promised by interference alignment. Gain insight into how simple, zero-forcing pre-coding schemes are optimal in locally connected interference networks, and discover how significant rate gains can be obtained by making cell association decisions and allocating backhaul resources based on centralized (cloud) processing and knowledge of network topology. Providing a link between information-theoretic analyses and interference management schemes that are easy to implement, this is an invaluable resource for researchers, graduate students and practicing engineers in wireless communications.
Wireless networking technologies are witnessed to become the integral part of industry, business, entertainment and daily life. Encyclopedia of Wireless Networks is expected to provide comprehensive references to key concepts of wireless networks, including research results of historical significance, areas of current interests, and growing directions in the future wireless networks. It can serve as a valuable and authoritative literature for students, researchers, engineers, and practitioners who need a quick reference to the subjects of wireless network technology and its relevant applications. Areas covered: 5G Network | Editors: Rahim Tafazolli, Rose Hu Ad hoc Network | Editor: Cheng Li Big Data for Networking | Editor: Song Guo Cellular Network, 2G/3G Network, 4G/LTE Network | Editor: Hsiao-hwa Chen Cognitive Radio Network | Editor: Ning Zhang Cooperative Communications | Editor: Kaoru Ota Cyber Physical Systems | Editor: Shiyan Hu Data Center Network | Editor: Lei Lei Delay Tolerant and Opportunistic Network | Editor: Yuanguo Bi Equalization, Synchronization and Channel Estimation | Editor: Yingying Chen Future Network Architecture | Editor: Wei Quan Game Theory in Wireless Network | Editor: Dusit Niyato Interference Characterization and Mitigation | Editor: Lin Cai Internet of Things | Editors: Xiuzhen Cheng, Wei Cheng Internet of Things and its Applications | Editor: Phone Lin Interworking Heterogeneous Wireless Network | Editor: Ping Wang Medium Access Control | Editors: Hassan Omar, Qiang Ye Millimeter-wave Communications | Editor: Ming Xiao MIMO-based Network | Editor: Prof. Wei Zhang Mobility Management and Models | Editors: Sandra Cespedes, Sangheon Pack Molecular, Biological and Multi-scale Communications | Editor: Adam Noel Network Economics and pricing | Editors: Jianwei Huang, Yuan Luo Network Forensics and surveillance, Fault Tolerance and Reliability | Editor: Hongwei Li Network Measurement and Virtualization | Editor: Yusheng Ji Quality of Service, Quality of Experience and Quality of Protection | Editors: Rui Luis Aguiar, Yu Cheng Resource Allocation and Management | Editors: Junshan Zhang, Nan Cheng Routing and Multi-cast, Router and Switch Design | Editor: Richard Yu Scaling Laws and Fundamental Limits | Editor: Ning Lu Security, Privacy and Trust | Editor: Kui Ren Short Range Communications, RFID and NFC | Editor: Zhiguo Shi Smart Grid Communications | Editor: Vincent W. S. Wong Vehicular Network | Editors: Lian Zhao, Qing Yang Video Streaming | Editor: Zhi Liu Wireless Body Area Network and e-healthcare | Editor: Honggang Wang Wireless Security | Editors: Haojin Zhu, Jian Shen Wireless Sensor Network | Editors: Jiming Chen, Ruilong Deng WLAN and OFDM | Editor: Xianbin Wang
This book presents a unified framework for the tractable analysis of large-scale, multi-antenna wireless networks using stochastic geometry. This mathematical analysis is essential for assessing and understanding the performance of complicated multi-antenna networks, which are one of the foundations of 5G and beyond networks to meet the ever-increasing demands for network capacity. Describing the salient properties of the framework, which makes the analysis of multi-antenna networks comparable to that of their single-antenna counterparts, the book discusses effective design approaches that do not require complex system-level simulations. It also includes various application examples with different multi-antenna network models to illustrate the framework’s effectiveness.
Broadcast spectrum is scarce, both in terms of our ability to access existing spectrum and as a result of access rules created by governments. An emerging paradigm called cognitive radio, however, has the potential to allow different systems to dynamically access and opportunistically exploit the same frequency band in an efficient way, thereby allowing broadcasters to use spectrum more efficiently. Cognitive Radio and Interference Management: Technology and Strategy brings together state-of-the-art research results on cognitive radio and interference management from both theoretical and practical perspectives. It serves as a bridge between people who are working to develop theoretical and practical research in cognitive radio and interference management, and therefore facilitate the future development of cognitive radio and its applications.
In recent years, wireless networks have become more ubiquitous and integrated into everyday life. As such, it is increasingly imperative to research new methods to boost cost-effectiveness for spectrum and energy efficiency. Interference Mitigation and Energy Management in 5G Heterogeneous Cellular Networks is a pivotal reference source for the latest research on emerging network architectures and mitigation technology to enhance cellular network performance and dependency. Featuring extensive coverage across a range of relevant perspectives and topics, such as interference alignment, resource allocation, and high-speed mobile environments, this book is ideally designed for engineers, professionals, practitioners, upper-level students, and academics seeking current research on interference and energy management for 5G heterogeneous cellular networks.
This brief explores the utilization of large antenna arrays in massive multiple-input-multiple-output (MIMO) for both interference suppression, where it can improve cell-edge user rates, and for wireless backhaul in small cell networks, where macro base stations can forward data to small access points in an energy efficient way. Massive MIMO is deemed as a critical technology for next generation wireless technology. By deploying an antenna array that has active elements in excess of the number of users, massive MIMO not only provides tremendous diversity gain but also powers new aspects for network design to improve performance. This brief investigates a better utilization of the excessive spatial dimensions to improve network performance. It combines random matrix theory and stochastic geometry to develop an analytical framework that accounts for all the key features of a network, including number of antenna array, base station density, inter-cell interference, random base station deployment, and network traffic load. The authors explore the impact from different network parameters through numerical analysis.Researchers in wireless network design will find this to be an exceptional resource, as will advanced-level students or professionals working in networking and information systems design.
This book presents a collection of research findings and proposals on computer science and computer engineering, introducing readers to essential concepts, theories, and applications. It also shares perspectives on how cutting-edge and established methodologies and techniques can be used to obtain new and interesting results. Each chapter focuses on a specific aspect of computer science or computer engineering, such as: software engineering, complex systems, computational intelligence, embedded systems, and systems engineering. As such, the book will bring students and professionals alike up to date on key advances in these areas.