This book is designed as an introductory text in neuroendocrinology; the study of the interaction between the brain and endocrine system and the influence of this on behaviour. The endocrine glands, pituitary gland and hypothalamus and their interactions and hormones are discussed. The action of steroid and thyroid hormone receptors and the regulation of target cell response to hormones is examined. The function of neuropeptides is discussed with respect to the neuroendocrine system and behaviour. The neuroimmune system and lymphokines are described and the interaction between the neuroendocrine and neuroimmune systems discussed. Finally, methods for studying hormonal influences on behaviour are outlined. Each chapter has review and essay questions designed for advanced students and honours or graduate students with a background in neuroscience, respectively.
Interactions between the immune, endocrine and nervous systems seldom appear as main issues in the neurosciences and in immunology. So far this was most likely due to the need to focus on the molecular and cellular bases of single neural, endocrine and immune processes. But hormones, neurotransmitters and neuropeptides can also influence more subtle mechanisms underlying immune cell activity. The contents of this volume aim at listing some aspects which show that not only the bases for neuroendocrine control of more refined mechanisms related to the organization and functioning of the immune systems to exist, but also that the immune system can actively communicate with neuroendocrine structures. The evidence is divided into three categories: - Anatomical, cellular and molecular bases for the exchange of information between immune, endocrine and neural cells, - reciprocal effects between immune and neuroendocrine mechanisms, and - immune-neuroendocrine regulatory circuits. Immunologically triggered neuroendocrine responses can be either beneficial or deleterious for the host. A systematic approach would imply the simultaneous evaluation of neuroendocrine and immune parameters and thus provide the basis for therapeutic interventions based on antagonizing or blocking undesirable effects.
A comprehensive, multidisciplinary review, Neural Plasticity and Memory: From Genes to Brain Imaging provides an in-depth, up-to-date analysis of the study of the neurobiology of memory. Leading specialists share their scientific experience in the field, covering a wide range of topics where molecular, genetic, behavioral, and brain imaging techniq
In the last decades, several in vitro and in vivo studies have revealed the existence of a very complex network between the neuroendocrine and immune system. Important molecular mechanisms underlying these interactions, in both physiological and pathological conditions, have also been described. Indeed, hormones play a pivotal role in the development and functional regulation of the immune system – both innate and acquired responses. Immune system cells present specific hormone receptors and themselves produce some hormones, thus influencing hormone secretion. More recently, the modulation of hormone secretion has been attempted for treating associated autoimmune disorders, further supporting the strong interplay between the endocrine and immune system. Distinguished experts, who have published extensively in their fields, have contributed comprehensive chapters to this volume. The focus is on the various aspects of endocrine-neuro-immune connections, providing an updated panorama - from basics to clinical applications - of current knowledge and still debated issues.
In 1964, George Solomon coined the term psychoneuroimmunology. In the intervening 30 years, this term has emerged into a dynamic field of study which investigates the unique interactions between the nervous, endocrine, and immune systems. The Handbook of Human Stress and Immunity is a comprehensive reference for this dynamic new field. Focusing on how stressors impact the central nervous system and the resulting changes in immune responses, the Handbook is the first to describehow stress specifically affects human immune systems. It discusses how stress generally makes people more susceptible to infection, how personal support systems can counteract the physiological effects of stress, and how stress, or lack of stress, affects the aging process. Chapters are authored by the leading names in the field and cover such diseases as autoimmune disease, viral pathogenesis, herpes, HIV, and AIDS.
In recent decades, it has become increasingly clear that the immune and nervous systems communicate with each other in a bidirectional way. The role of chronic stress in allergic disease and inflammation has been confirmed and raises the important question of how psychosocial factors influence the outcome of allergic conditions. This book explains the roles of the autonomic, peripheral and central nervous systems in allergy and asthma. With contributions from leading authorities - both clinicians and basic researchers - it covers a wide range of topics from psychology over epigenetics to brain imaging. The 15 invited reviews discuss topics such as the role of stress in allergy and asthma, the concept of programming in utero and in childhood and adulthood, the significance of neurotrophins, and the involvement of the nervous system in the lung in asthma and lung inflammation. The interactions between mast cells and the nervous system are examined as well as the role of the gut microbiome in regulating the hypothalamic-pituitary-adrenal axis and the stress response. Further chapters are devoted to neural and behavioral changes associated with food allergy, the role of the neuroendocrine system in the skin, and the way in which itch is processed by the brain. Unique in its field, this valuable volume is recommended reading not only for allergologists, psychologists specializing in allergy and somatic manifestations, respirologists and asthma researchers, but for anyone interested in psychoneuroimmunology.
Neuroendocrinology underpins fundamental physiological, molecular, biological, and genetic principles such as the regulation of gene transcription and translation. This handbook highlights the experimental and technical foundations of each area's major concepts and principles.
With the contribution from more than one hundred CNS neurotrauma experts, this book provides a comprehensive and up-to-date account on the latest developments in the area of neurotrauma including biomarker studies, experimental models, diagnostic methods, and neurotherapeutic intervention strategies in brain injury research. It discusses neurotrauma mechanisms, biomarker discovery, and neurocognitive and neurobehavioral deficits. Also included are medical interventions and recent neurotherapeutics used in the area of brain injury that have been translated to the area of rehabilitation research. In addition, a section is devoted to models of milder CNS injury, including sports injuries.
The brain is the most complex organ in our body. Indeed, it is perhaps the most complex structure we have ever encountered in nature. Both structurally and functionally, there are many peculiarities that differentiate the brain from all other organs. The brain is our connection to the world around us and by governing nervous system and higher function, any disturbance induces severe neurological and psychiatric disorders that can have a devastating effect on quality of life. Our understanding of the physiology and biochemistry of the brain has improved dramatically in the last two decades. In particular, the critical role of cations, including magnesium, has become evident, even if incompletely understood at a mechanistic level. The exact role and regulation of magnesium, in particular, remains elusive, largely because intracellular levels are so difficult to routinely quantify. Nonetheless, the importance of magnesium to normal central nervous system activity is self-evident given the complicated homeostatic mechanisms that maintain the concentration of this cation within strict limits essential for normal physiology and metabolism. There is also considerable accumulating evidence to suggest alterations to some brain functions in both normal and pathological conditions may be linked to alterations in local magnesium concentration. This book, containing chapters written by some of the foremost experts in the field of magnesium research, brings together the latest in experimental and clinical magnesium research as it relates to the central nervous system. It offers a complete and updated view of magnesiums involvement in central nervous system function and in so doing, brings together two main pillars of contemporary neuroscience research, namely providing an explanation for the molecular mechanisms involved in brain function, and emphasizing the connections between the molecular changes and behavior. It is the untiring efforts of those magnesium researchers who have dedicated their lives to unraveling the mysteries of magnesiums role in biological systems that has inspired the collation of this volume of work.
Is this a time for a sleeping giant to rise? We have known since study of the lymphocyte and plasma cells really began in earnest in the early 1940's that the pituitary adrenal axis under intimate control of the hypothalamus could influence immunological functions profoundly. We have also known for at least 20 years in my recollection that female sex hor mones can maximize certain immunity functions while male sex hormones tend to suppress many immunological reactions. The thyroid hormones accelerate antibody production while at the same time sp~eding up de gradation of antibodies and immunoglobulins and thyroidectomy decreases the rate of antibody production. Further, much evidence has accumulated indicating that the brain, yes even the mind, can influence in significant ways susceptibility to infections, cancers and to development of a variety of autoimmune diseases. More than 20 years ago, my colleagues and I convinced ourselves, if no one else, that hypnosis can exert major in fluences on the effector limb of the classical atopic allergic reactions. We showed with Aaron Papermaster that the Prausnitz-Kustner reaction may be greatly inhibited, indeed largely controlled, by post-hypnotic suggestion. And it was not even necessary for us to publish our discovery because scientists in John Humphrey's laboratory at Mill Hill Research Center in London had beaten us to the punch. They described hypnotic control of both the PK reaction and delayed allergic reactions to tuberculin by hypnosis.