This compact book focuses on self-adjoint operators’ well-known named inequalities and Korovkin approximation theory, both in a Hilbert space environment. It is the first book to study these aspects, and all chapters are self-contained and can be read independently. Further, each chapter includes an extensive list of references for further reading. The book’s results are expected to find applications in many areas of pure and applied mathematics. Given its concise format, it is especially suitable for use in related graduate classes and research projects. As such, the book offers a valuable resource for researchers and graduate students alike, as well as a key addition to all science and engineering libraries.
This monograph presents recent and original work of the author on inequalities in real, functional and fractional analysis. The chapters are self-contained and can be read independently, they include an extensive list of references per chapter. The book’s results are expected to find applications in many areas of applied and pure mathematics, especially in ordinary and partial differential equations and fractional differential equations. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, as well as Science and Engineering University libraries.
This book focuses on computational and fractional analysis, two areas that are very important in their own right, and which are used in a broad variety of real-world applications. We start with the important Iyengar type inequalities and we continue with Choquet integral analytical inequalities, which are involved in major applications in economics. In turn, we address the local fractional derivatives of Riemann–Liouville type and related results including inequalities. We examine the case of low order Riemann–Liouville fractional derivatives and inequalities without initial conditions, together with related approximations. In the next section, we discuss quantitative complex approximation theory by operators and various important complex fractional inequalities. We also cover the conformable fractional approximation of Csiszar’s well-known f-divergence, and present conformable fractional self-adjoint operator inequalities. We continue by investigating new local fractional M-derivatives that share all the basic properties of ordinary derivatives. In closing, we discuss the new complex multivariate Taylor formula with integral remainder. Sharing results that can be applied in various areas of pure and applied mathematics, the book offers a valuable resource for researchers and graduate students, and can be used to support seminars in related fields.
Documents realistic applications of approximate reasoning techniques, with emphasis placed on operational systems. The papers presented explore new areas of practical decision-making and control systems by considering important aspects of fuzzy logic theory and the latest developments in the field of expert systems. Specific fields of application covered include modelling and control, management, planning, diagnostics, finance and software. Contains 12 papers.
This book presents generalized Caputo fractional Ostrowski and Grüss-type inequalities involving several Banach algebra valued functions. Furthermore, the author gives generalized Canavati fractional Ostrowski, Opial, Grüss, and Hilbert-Pachpatte-type inequalities for multiple Banach algebra valued functions. By applying the p-Schatten norms over the von Neumann–Schatten classes, the author produces the analogous refined and interesting inequalities. The author provides many applications. This book’s results are expected to find applications in many areas of pure and applied mathematics, especially in fractional inequalities and fractional differential equations. Other interesting applications are in applied sciences like geophysics, physics, chemistry, economics, and engineering. This book is appropriate for researchers, graduate students, practitioners, and seminars of the above disciplines, also to be in all science and engineering libraries.
This book includes constructive approximation theory; it presents ordinary and fractional approximations by positive sublinear operators, and high order approximation by multivariate generalized Picard, Gauss–Weierstrass, Poisson–Cauchy and trigonometric singular integrals. Constructive and Computational Fractional Analysis recently is more and more in the center of mathematics because of their great applications in the real world. In this book, all presented is original work by the author given at a very general level to cover a maximum number of cases in various applications. The author applies generalized fractional differentiation techniques of Riemann–Liouville, Caputo and Canavati types and of fractional variable order to various kinds of inequalities such as of Opial, Hardy, Hilbert–Pachpatte and on the spherical shell. He continues with E. R. Love left- and right-side fractional integral inequalities. They follow fractional Landau inequalities, of left and right sides, univariate and multivariate, including ones for Semigroups. These are developed to all possible directions, and right-side multivariate fractional Taylor formulae are proven for the purpose. It continues with several Gronwall fractional inequalities of variable order. This book results are expected to find applications in many areas of pure and applied mathematics. As such this book is suitable for researchers, graduate students and seminars of the above disciplines, also to be in all science and engineering libraries.
This special volume is a collection of outstanding more applied articles presented in AMAT 2015 held in Ankara, May 28-31, 2015, at TOBB Economics and Technology University. The collection is suitable for Applied and Computational Mathematics and Engineering practitioners, also for related graduate students and researchers. Furthermore it will be a useful resource for all science and engineering libraries. This book includes 29 self-contained and well-edited chapters that can be among others useful for seminars in applied and computational mathematics, as well as in engineering.
This book constitutes the proceedings of the XVIII International Conference on Data Science and Intelligent Analysis of Information (ICDSIAI'2018), held in Kiev, Ukraine on June 4-7, 2018. The conference series, which dates back to 2001 when it was known as the Workshop on Intelligent Analysis of Information, was renamed in 2008 to reflect the broadening of its scope and the composition of its organizers and participants. ICDSIAI'2018 brought together a large number of participants from numerous countries in Europe, Asia and the USA. The papers presented addressed novel theoretical developments in methods, algorithms and implementations for the broadly perceived areas of big data mining and intelligent analysis of data and information, representation and processing of uncertainty and fuzziness, including contributions on a range of applications in the fields of decision-making and decision support, economics, education, ecology, law, and various areas of technology. The book is dedicated to the memory of the conference founder, the late Professor Tetiana Taran, an outstanding scientist in the field of artificial intelligence whose research record, vision and personality have greatly contributed to the development of Ukrainian artificial intelligence and computer science.
Knowledge can be modeled and computed using computational mathematical methods, then lead to real world conclusions. The strongly related to that Computational Analysis is a very large area with lots of applications. This monograph includes a great variety of topics of Computational Analysis. We present: probabilistic wavelet approximations, constrained abstract approximation theory, shape preserving weighted approximation, non positive approximations to definite integrals, discrete best approximation, approximation theory of general Picard singular operators including global smoothness preservation property, fractional singular operators. We also deal with non-isotropic general Picard singular multivariate operators and q-Gauss-Weierstrass singular q-integral operators. We talk about quantitative approximations by shift-invariant univariate and multivariate integral operators, nonlinear neural networks approximation, convergence with rates of positive linear operators, quantitative approximation by bounded linear operators, univariate and multivariate quantitative approximation by stochastic positive linear operators on univariate and multivariate stochastic processes. We further present right fractional calculus and give quantitative fractional Korovkin theory of positive linear operators. We also give analytical inequalities, fractional Opial inequalities, fractional identities and inequalities regarding fractional integrals. We further deal with semi group operator approximation, simultaneous Feller probabilistic approximation. We also present Fuzzy singular operator approximations. We give transfers from real to fuzzy approximation and talk about fuzzy wavelet and fuzzy neural networks approximations, fuzzy fractional calculus and fuzzy Ostrowski inequality. We talk about discrete fractional calculus, nabla discrete fractional calculus and inequalities. We study the q-inequalities, and q-fractional inequalities. We further study time scales: delta and nabla approaches, duality principle and inequalities. We introduce delta and nabla time scales fractional calculus and inequalities. We finally study convergence with rates of approximate solutions to exact solution of multivariate Dirichlet problem and multivariate heat equation, and discuss the uniqueness of solution of general evolution partial differential equation \ in multivariate time. The exposed results are expected to find applications to: applied and computational mathematics, stochastics, engineering, artificial intelligence, vision, complexity and machine learning. This monograph is suitable for graduate students and researchers.
This book demonstrates the unifying methods of generalized versions of Hilfer, Prabhakar and Hilfer–Prabhakar fractional calculi, and we establish related unifying fractional integral inequalities of the following types: Iyengar, Landau, Polya, Ostrowski, Hilbert–Pachpatte, Hardy, Opial, Csiszar’s f-Divergence, self-adjoint operator and related to fuzziness. Our results are univariate and multivariate. This book’s results are expected to find applications in many areas of pure and applied mathematics, especially in fractional inequalities and fractional differential equations. Other interesting applications can be in applied sciences like geophysics, physics, chemistry, economics and engineering. This book is appropriate for researchers, graduate students, practitioners and seminars of the above disciplines, also to be in all science and engineering libraries.