Integration and Operation of Post-combustion Capture System on Coal-fired Power Generation: Load Following and Peak Power

Integration and Operation of Post-combustion Capture System on Coal-fired Power Generation: Load Following and Peak Power

Author: Robert David Brasington (S.M.)

Publisher:

Published: 2012

Total Pages: 87

ISBN-13:

DOWNLOAD EBOOK

Coal-fired power plants with post combustion capture and sequestration (CCS) systems have a variety of challenges to integrate the steam generation, air quality control, cooling water systems and steam turbine with the capture system. A variety of engineering studies have been completed that cover these aspects when a plant is operating at full load while operating at a 90 percent capture rate. These studies investigate the basic integration of the these systems, the energy penalty and the effect of capital costs; however, none of these studies comprehensively explore the ability of the capture plant and the balance of the integrated system to respond dynamically to changes in load or capture rate. These load changes occur due to a change in demand for electricity in the system, generation by variable, intermittent resources, or if the plant is equipped with the ability to store solvent to implement price arbitrage. The integrated carbon capture system can be broken down into three general modes: full capacity, load following and peak power generation. Each of these modes presents unique challenges to integration with the CCS system. The load following mode requires the ability to accommodate different ramp rates that are reflected in flue gas flow and composition. Operation at partial load will affect the quality of steam sent to the solvent regeneration unit. Depending on the setup of the steam turbine system, at lower loads multiple extractions points may be necessary or an increase of the amount of extraction steam will be required due to the reduction in steam quality. Using Aspen Dynamics, a CO2 capture system using a monoethanolamine (MEA) absorption process is simulated at various plant loads to determine the overall effects on the efficiency of the CCS unit and the balance of the system. In addition, the dynamic behavior of the CCS unit on power output and emissions is shown to demonstrate that the capability of a coal-fired power plant to load follow is not hindered by the addition of a carbon capture unit. The solvent storage mode can be further broken to two operation modes. The first is peak power production, which occurs when the solvent is capturing CO2 from the flue gas, but is minimizing or delaying regeneration to a future time through storage. This mode is used to take advantage of peak power prices by maximizing power output of the plant and maintaining a 90 percent capture rate. The regeneration mode entails the solvent being released from the storage tanks and sent to the reboiler column. Solvent storage has been shown in previous studies to have the ability to increase operating profits, but these studies have neglected to incorporate the capital costs associated with this type of operation mode and the operational issues and complexity associated with the large swings in quantities of steam required for the solvent regeneration. By including the capital costs, this study determines that a system with large duration solvent storage is not economically viable given the flexible demands of the system and current electricity price spreads. This thesis presents a framework for considering the flexible operations of a coal-fired power plant with an integrated carbon capture and sequestration system. By exploring the operational limitations of the integrated system and the economic costs, an evaluation is made of the viability of different CCS operational schemes. This study finds that the CCS unit can match the dynamics of the base coal plant and also increase the operational flexibility of the system. The increased capital expenditure to meet peak demand is viable for larger steam turbine configurations in electricity systems with high peak prices and plants with short duration solvent storage.


Absorption-Based Post-Combustion Capture of Carbon Dioxide

Absorption-Based Post-Combustion Capture of Carbon Dioxide

Author: Paul Feron

Publisher: Woodhead Publishing

Published: 2016-05-27

Total Pages: 816

ISBN-13: 0081005156

DOWNLOAD EBOOK

Absorption-Based Post-Combustion Capture of Carbon Dioxide provides a comprehensive and authoritative review of the use of absorbents for post-combustion capture of carbon dioxide. As fossil fuel-based power generation technologies are likely to remain key in the future, at least in the short- and medium-term, carbon capture and storage will be a critical greenhouse gas reduction technique. Post-combustion capture involves the removal of carbon dioxide from flue gases after fuel combustion, meaning that carbon dioxide can then be compressed and cooled to form a safely transportable liquid that can be stored underground. Provides researchers in academia and industry with an authoritative overview of the amine-based methods for carbon dioxide capture from flue gases and related processes Editors and contributors are well known experts in the field Presents the first book on this specific topic


Post-Combustion CO2 Capture: Energetic Evaluation of Chemical Absorption Processes in Coal-Fired Steam Power Plants

Post-Combustion CO2 Capture: Energetic Evaluation of Chemical Absorption Processes in Coal-Fired Steam Power Plants

Author: Jochen Oexmann

Publisher: Cuvillier Verlag

Published: 2011-01-19

Total Pages: 210

ISBN-13: 3736936338

DOWNLOAD EBOOK

In this work, a semi-empirical column model is developed to represent absorber and desorber columns of post-combustion CO2 capture processes in coal-fired steam power plants. The chemical solvents are represented by empirical correlations on the basis of fundamental measurement data (CO2 solubility, heat capacity, density). The model of a CO2 capture process including the column model is coupled to detailed models of a hard-coal-fired steam power plant and of a CO2 compressor to evaluate and compare the impact of CO2 capture using six different solvents on the overall power plant process.


Thermal Integration of an MEA Post Combustion Carbon Capture System With a Supercritical Coal Fired Power Plant

Thermal Integration of an MEA Post Combustion Carbon Capture System With a Supercritical Coal Fired Power Plant

Author: Gordon Jonas

Publisher:

Published: 2012

Total Pages: 123

ISBN-13: 9781267143969

DOWNLOAD EBOOK

This analysis predicts maximum heat rate improvements in the range of 1.20 % to 7.43 % for a PRB coal with an Inline 4 compressor, depending on the integration technique. A range of 1.29 % to 3.59 % heat rate improvement was shown for Illinois #6 and 1.20 % to 10.45% for a Lignite coal, both with an Inline 4 compressor. These heat rate improvements will be explained throughout the thesis.


Carbon Capture and Storage Including Coal-fired Power Plants

Carbon Capture and Storage Including Coal-fired Power Plants

Author: Todd P. Carington

Publisher:

Published: 2010

Total Pages: 206

ISBN-13:

DOWNLOAD EBOOK

Nationally-recognised studies and our contacts with a diverse group of industry representatives, non-governmental organisations, and academic researchers show that key barriers to CCS deployment include (1) underdeveloped and costly CO2 capture technology and (2) regulatory and legal uncertainties over CO2 capture, injection, and storage. Among the key technological barriers are a lack of experience in capturing significant amounts of CO2 from power plants and the significant cost of capturing CO2, particularly from existing coal-fired power plants, which are the single largest source of CO2 emissions in the United States. Compounding these technological issues are regulatory and legal uncertainties, including uncertainty regarding liability for CO2 leakage and ownership of CO2 once injected. According to the IPCC, the National Academy of Sciences, and other knowledgeable authorities, another barrier is the absence of a national strategy to control CO2 emissions (emissions trading plan, CO2 emissions tax, or other mandatory control of CO2 emissions), without which the electric utility industry has little incentive to capture and store its CO2 emissions. Moreover, according to key agency officials, the absence of a national strategy has also deterred their agencies from addressing other important practical issues, such as resolving how stored CO2 would be treated in a future CO2 emissions trading plan.


Negative Emissions Technologies and Reliable Sequestration

Negative Emissions Technologies and Reliable Sequestration

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2019-04-08

Total Pages: 511

ISBN-13: 0309484529

DOWNLOAD EBOOK

To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.


Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

Author:

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Coal-fired power plants, equipped either with oxycombustion or post-combustion CO2 capture, will require a CO2 compression system to increase the pressure of the CO2 to the level needed for sequestration. Most analyses show that CO2 compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO2 capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO2 capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination with feedwater heating, would result in heat rate reductions of 7.43 percent for PRB coal and 10.45 percent for lignite.


Computational Optimization of Design and Variable Operation of CO2-capture-enabled Coal-natural Gas Power Plants

Computational Optimization of Design and Variable Operation of CO2-capture-enabled Coal-natural Gas Power Plants

Author: Charles A. Kang

Publisher:

Published: 2015

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Climate change mitigation will require large reductions in CO2 emissions from electricity production. Some of these cuts will come from increased use of renewable energy resources, but it is likely that thermal power plants will be used for an extended period of time to maintain grid stability and accommodate seasonal variability in renewable generation. Therefore, thermal power plants with CO2 capture and storage (CCS) capability may coexist with renewable generation to provide reliable low-carbon electricity. Moreover, CCS-enabled facilities designed for constant operations are not necessarily optimal under the conditions that are likely to occur with increased renewable penetration. There is therefore a need to devise optimal designs and operating plans for flexible thermal power stations equipped with CCS. In this work, computational optimization is used to determine the design and operating plan of a coal-natural gas power station with CO2 capture, under a CO2 emission performance standard. The facility consists of a coal power plant undergoing a retrofit with solvent-based post-combustion CO2 capture. The heat for CO2 capture solvent regeneration is provided by a combined cycle gas turbine (CCGT) designed for combined-heat-and-power service. Variable facility operations are represented by discrete operating modes dispatched using the electricity price-duration curve. Two problem formulations are considered. In the `simplified-capture' problem formulation, the CO2 capture system is represented using a single variable for capacity, while heat integration (including a detailed treatment of the heat recovery steam generator component of the CCGT) is optimized jointly with variable operations. In the `full-system' problem formulation, the detailed design of the CO2 capture system is optimized alongside a full treatment of heat integration and variable operations. To accomplish this, a computationally efficient proxy model of the CO2 capture system is developed that reproduces the behavior of a full-physics Aspen Plus model. Both problem formulations are incorporated in a bi-objective mixed-integer nonlinear program in which total capital requirement (TCR) is minimized and net present value (NPV) is maximized. Pareto frontiers are generated for six scenarios constructed from recent historical data from West Texas, the United Kingdom, and India. All six scenarios are considered using the simplified-capture problem formulation. The West Texas base scenario and the India scenario, which differ greatly from each other, are considered using the full-system problem formulation as well. Results between the two formulations are quite consistent and show that hourly electricity price variability and the choice of objective function can have a large effect on optimal design and planned operations. In the West Texas base scenario, which has high price variability, the maximum NPV facility in the full-system formulation (NPV of $201 million, TCR of $510 million) has a time-varying operating plan in which the CO2 capture system has a utilization factor of 66% (out of a maximum of 85%). In this scenario the minimum TCR facility (NPV of $101 million, TCR of $333 million) has a constant operating profile. In contrast, low price variability in the India scenario results in constant operations regardless of objective. Two advanced CO2 capture processes -- the mixed salt and piperazine processes -- are considered using the simplified-capture formulation for the West Texas base scenario. The advanced processes are shown to outperform the standard monoethanolamine (MEA) process, with the mixed salt process outperforming the MEA process by 16% for maximum NPV and 14% for minimum TCR. The full-system formulation using the MEA process provides generally similar results to those from the simplified-capture formulation in both the India and West Texas base scenarios. However, the inclusion of the detailed design of the CO2 capture process in the full-system problem formulation provides valuable design information, such as the effect of the integer nature of the number of CO2 capture trains. Taken in total, the results of this study highlight the value of applying computational optimization to consider integrated plant design and variable operations together.


The Water-Food-Energy Nexus

The Water-Food-Energy Nexus

Author: I. M. Mujtaba

Publisher: CRC Press

Published: 2017-09-11

Total Pages: 846

ISBN-13: 1351649248

DOWNLOAD EBOOK

Exponential growth of the worldwide population requires increasing amounts of water, food, and energy. However, as the quantity of available fresh water and energy sources directly affecting cost of food production and transportation diminishes, technological solutions are necessary to secure sustainable supplies. In direct response to this reality, this book focuses on the water-energy-food nexus and describes in depth the challenges and processes involved in efficient water and energy production and management, wastewater treatment, and impact upon food and essential commodities. The book is organized into 4 sections on water, food, energy, and the future of sustainability, highlighting the interplay among these topics. The first section emphasizes water desalination, water management, and wastewater treatment. The second section discusses cereal processing, sustainable food security, bioenergy in food production, water and energy consumption in food processing, and mathematical modeling for food undergoing phase changes. The third section discusses fossil fuels, biofuels, synthetic fuels, renewable energy, and carbon capture. Finally, the book concludes with a discussion of the future of sustainability, including coverage of the role of molecular thermodynamics in developing processes and products, green engineering in process systems, petrochemical water splitting, petrochemical approaches to solar hydrogen generation, design and operation strategy of energy-efficient processes, and the sustainability of process, supply chain, and enterprise.