Basic Integrated Circuit Engineering

Basic Integrated Circuit Engineering

Author: Douglas J. Hamilton

Publisher: McGraw-Hill Companies

Published: 1975

Total Pages: 620

ISBN-13:

DOWNLOAD EBOOK

-- Solutions manual to accompany Basic integrated circuit engineering. [By] Douglas J. Hamilton [and] William G. Howard. N.Y., McGraw-Hill, 1976. 280p.


Radio-Frequency Integrated-Circuit Engineering

Radio-Frequency Integrated-Circuit Engineering

Author: Cam Nguyen

Publisher: John Wiley & Sons

Published: 2015-03-04

Total Pages: 884

ISBN-13: 1118900472

DOWNLOAD EBOOK

Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs. * Provides essential knowledge in EM and microwave engineering, passive and active RFICs, RFIC analysis and design techniques, and RF systems vital for RFIC students and engineers * Blends analog and microwave engineering approaches for RFIC design at high frequencies * Includes problems at the end of each chapter


Integrated Circuit Test Engineering

Integrated Circuit Test Engineering

Author: Ian A. Grout

Publisher: Springer Science & Business Media

Published: 2005-08-22

Total Pages: 396

ISBN-13: 9781846280238

DOWNLOAD EBOOK

Using the book and the software provided with it, the reader can build his/her own tester arrangement to investigate key aspects of analog-, digital- and mixed system circuits Plan of attack based on traditional testing, circuit design and circuit manufacture allows the reader to appreciate a testing regime from the point of view of all the participating interests Worked examples based on theoretical bookwork, practical experimentation and simulation exercises teach the reader how to test circuits thoroughly and effectively


Integrated Circuit Engineering

Integrated Circuit Engineering

Author: L. J. Herbst

Publisher: Oxford University Press, USA

Published: 1996

Total Pages: 496

ISBN-13:

DOWNLOAD EBOOK

The book gives a comprehensive coverage of ICs and can be divided into three parts. The first deals with processing, component formation, and device modelling. The second part covers digital and analogue circuits, including semicondutor memories, with performance summaries of commercialproducts. The final part explains the nature of application specific integrated circuits ( ASICs), and the ASIC design process. The final chapter covers VLSI scaling and the dominant role of interconnections in the scaling process. The text caters for many enginers and scientists who need to have agrasp of IC capabilities and ASIC design rooted in an appreciation of processing, device, behaviour, and circuit practice.


Integrated Circuit Quality and Reliability

Integrated Circuit Quality and Reliability

Author: Eugene R. Hnatek

Publisher:

Published: 1987

Total Pages: 736

ISBN-13:

DOWNLOAD EBOOK

Examines all important aspects of integrated circuit design, fabrication, assembly and test processes as they relate to quality and reliability. This second edition discusses in detail: the latest circuit design technology trends; the sources of error in wafer fabrication and assembly; avenues of contamination; new IC packaging methods; new in-line process monitors and test structures; and more.;This work should be useful to electrical and electronics, quality and reliability, and industrial engineers; computer scientists; integrated circuit manufacturers; and upper-level undergraduate, graduate and continuing-education students in these disciplines.


High-Frequency Integrated Circuits

High-Frequency Integrated Circuits

Author: Sorin Voinigescu

Publisher: Cambridge University Press

Published: 2013-02-28

Total Pages: 921

ISBN-13: 0521873029

DOWNLOAD EBOOK

A transistor-level, design-intensive overview of high speed and high frequency monolithic integrated circuits for wireless and broadband systems from 2 GHz to 200 GHz, this comprehensive text covers high-speed, RF, mm-wave, and optical fibre circuits using nanoscale CMOS, SiGe BiCMOS, and III-V technologies. Step-by-step design methodologies, end-of chapter problems, and practical simulation and design projects are provided, making this an ideal resource for senior undergraduate and graduate courses in circuit design. With an emphasis on device-circuit topology interaction and optimization, it gives circuit designers and students alike an in-depth understanding of device structures and process limitations affecting circuit performance.


Digital Integrated Circuits

Digital Integrated Circuits

Author: John E. Ayers

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 468

ISBN-13: 1420069888

DOWNLOAD EBOOK

Exponential improvement in functionality and performance of digital integrated circuits has revolutionized the way we live and work. The continued scaling down of MOS transistors has broadened the scope of use for circuit technology to the point that texts on the topic are generally lacking after a few years. The second edition of Digital Integrated Circuits: Analysis and Design focuses on timeless principles with a modern interdisciplinary view that will serve integrated circuits engineers from all disciplines for years to come. Providing a revised instructional reference for engineers involved with Very Large Scale Integrated Circuit design and fabrication, this book delves into the dramatic advances in the field, including new applications and changes in the physics of operation made possible by relentless miniaturization. This book was conceived in the versatile spirit of the field to bridge a void that had existed between books on transistor electronics and those covering VLSI design and fabrication as a separate topic. Like the first edition, this volume is a crucial link for integrated circuit engineers and those studying the field, supplying the cross-disciplinary connections they require for guidance in more advanced work. For pedagogical reasons, the author uses SPICE level 1 computer simulation models but introduces BSIM models that are indispensable for VLSI design. This enables users to develop a strong and intuitive sense of device and circuit design by drawing direct connections between the hand analysis and the SPICE models. With four new chapters, more than 200 new illustrations, numerous worked examples, case studies, and support provided on a dynamic website, this text significantly expands concepts presented in the first edition.


High Performance Integrated Circuit Design

High Performance Integrated Circuit Design

Author: Emre Salman

Publisher: McGraw Hill Professional

Published: 2012-08-21

Total Pages: 738

ISBN-13: 0071635769

DOWNLOAD EBOOK

The latest techniques for designing robust, high performance integrated circuits in nanoscale technologies Focusing on a new technological paradigm, this practical guide describes the interconnect-centric design methodologies that are now the major focus of nanoscale integrated circuits (ICs). High Performance Integrated Circuit Design begins by discussing the dominant role of on-chip interconnects and provides an overview of technology scaling. The book goes on to cover data signaling, power management, synchronization, and substrate-aware design. Specific design constraints and methodologies unique to each type of interconnect are addressed. This comprehensive volume also explains the design of specialized circuits such as tapered buffers and repeaters for data signaling, voltage regulators for power management, and phase-locked loops for synchronization. This is an invaluable resource for students, researchers, and engineers working in the area of high performance ICs. Coverage includes: Technology scaling Interconnect modeling and extraction Signal propagation and delay analysis Interconnect coupling noise Global signaling Power generation Power distribution networks CAD of power networks Techniques to reduce power supply noise Power dissipation Synchronization theory and tradeoffs Synchronous system characteristics On-chip clock generation and distribution Substrate noise in mixed-signal ICs Techniques to reduce substrate noise