Functional Characterization of Insect Chemoreceptors: Receptivity Range, Expression and Evolution

Functional Characterization of Insect Chemoreceptors: Receptivity Range, Expression and Evolution

Author: William B. Walker

Publisher: Frontiers Media SA

Published: 2016-06-11

Total Pages: 165

ISBN-13: 288919860X

DOWNLOAD EBOOK

Olfaction and taste are of critical importance to insects and other animals, since vital behaviours, including mate, food and host seeking, as well as predator and toxin avoidance, are guided by chemosensory cues. Mate and habitat choice are to a large extent determined by chemical signals, and chemoreceptors contribute accordingly to pre-mating isolation barriers and speciation. In addition to fundamental physiological, ecological and evolutionary consideration, the knowledge of insect taste and especially olfaction is also of great importance to human economies, since it facilitates a more informed approach to the management of insect pests of agricultural crops and forests, and insect vectors of disease. Chemoreceptors, which bind to external chemical signals and then transform and send the sensory information to the brain, are at the core of the peripheral olfactory and gustatory system and have thus been the focus of recent research in chemical ecology. Specifically, emphasis has been placed on functional characterization of olfactory receptor genes, which are derived from three large gene families, namely the odorant receptors, gustatory receptors and ionotropic receptors. Spatial expression patterns of olfactory receptors in diverse chemosensory tissues provide information on divergent functions, with regards to ecologically relevant behaviours. On the other hand, characterization of olfactory receptor activation profiles, or “deorphanization”, provides complimentary data on the molecular range of receptivity to the fundamental unit of the olfactory sense. The aim of this Research Topic is to give an update on the breadth and depth of research currently in progress related to understanding the molecular mechanisms of insect chemoreception, with specific emphasis on the olfactory receptors.


Functional Characterization of Insect Chemoreceptors: Receptivity Range, Expression and Evolution

Functional Characterization of Insect Chemoreceptors: Receptivity Range, Expression and Evolution

Author:

Publisher:

Published: 2016

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Olfaction and taste are of critical importance to insects and other animals, since vital behaviours, including mate, food and host seeking, as well as predator and toxin avoidance, are guided by chemosensory cues. Mate and habitat choice are to a large extent determined by chemical signals, and chemoreceptors contribute accordingly to pre-mating isolation barriers and speciation. In addition to fundamental physiological, ecological and evolutionary consideration, the knowledge of insect taste and especially olfaction is also of great importance to human economies, since it facilitates a more informed approach to the management of insect pests of agricultural crops and forests, and insect vectors of disease. Chemoreceptors, which bind to external chemical signals and then transform and send the sensory information to the brain, are at the core of the peripheral olfactory and gustatory system and have thus been the focus of recent research in chemical ecology. Specifically, emphasis has been placed on functional characterization of olfactory receptor genes, which are derived from three large gene families, namely the odorant receptors, gustatory receptors and ionotropic receptors. Spatial expression patterns of olfactory receptors in diverse chemosensory tissues provide information on divergent functions, with regards to ecologically relevant behaviours. On the other hand, characterization of olfactory receptor activation profiles, or "deorphanization", provides complimentary data on the molecular range of receptivity to the fundamental unit of the olfactory sense. The aim of this Research Topic is to give an update on the breadth and depth of research currently in progress related to understanding the molecular mechanisms of insect chemoreception, with specific emphasis on the olfactory receptors.


Discovery and Characterization of Olfactory-related Genes in the Wheat Stem Sawfly, Cephus Cinctus, a Major Pest of Wheat in the Northern Plains

Discovery and Characterization of Olfactory-related Genes in the Wheat Stem Sawfly, Cephus Cinctus, a Major Pest of Wheat in the Northern Plains

Author: Joanna Christine Gress

Publisher:

Published: 2014

Total Pages: 356

ISBN-13:

DOWNLOAD EBOOK

The wheat stem sawfly (WSS), Cephus cinctus (Hymenoptera: Cephidae), is one of the most important insect pests of wheat in the northern Great Plains region of the United States and Canada, with economic losses exceeding $100 million per year. Traditional pest management strategies including pesticides are generally unsuccessful due to an extended adult flight time and the inaccessible larval stage that feeds within the wheat stem. Research towards integrated pest management strategies based on olfaction has proved promising. However, little is known about the molecular basis of olfaction in this important insect pest. We have identified and annotated 131 members of the major olfactory-related gene families from antennal transcriptome and whole genome sequences, including: 6 odorant binding proteins (OBP), 8 chemosensory proteins (CSP), 53 odorant receptors (OR), 14 ionotropic receptors (IR), 12 carboxylesterases (CCE), 8 gluthatione S-transferases (GST), and 29 cytochrome P450s (P450). Expression levels in the antennae, sawfly bodies, and whole larvae were analyzed using RNA-seq. Gene expression results were used to identify candidate genes for further functional characterization based on higher enriched expression in antennae and/or sex-biased expression in the antennae. These candidate WSS olfactory genes may mediate important pest behaviors and serve as molecular targets for future insect management strategies.


Molecular Basis of Olfaction

Molecular Basis of Olfaction

Author:

Publisher: Academic Press

Published: 2015-01-23

Total Pages: 147

ISBN-13: 0128029137

DOWNLOAD EBOOK

The scope of this volume of Progress in Molecular Biology and Translational Science includes the molecular regulation of olfactory processes in vertebrates and insects including detailed discussion of olfactory proteins, signaling cascades and olfactory receptor modeling. In addition, because insect olfaction is an important and emerging field, it is also discussed in the context of key research questions such as disruption of host-finding by insect disease vectors, elucidation of the diverse range of compounds that are detected by insects, and the detection of pheromones by moths. Comprehensive coverage of molecular processes in olfaction of vertebrates and insects Focus on the emerging field of insect olfaction Contributions by leading research groups in their fields, from a range of countries Discusses fundamental knowledge and also key applications being addressed by the research


Neuromorphic Olfaction

Neuromorphic Olfaction

Author: Krishna C. Persaud

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 237

ISBN-13: 1439871728

DOWNLOAD EBOOK

Many advances have been made in the last decade in the understanding of the computational principles underlying olfactory system functioning. Neuromorphic Olfaction is a collaboration among European researchers who, through NEUROCHEM (Fp7-Grant Agreement Number 216916)-a challenging and innovative European-funded project-introduce novel computing p


Chemosensory Transduction

Chemosensory Transduction

Author: Frank Zufall

Publisher: Academic Press

Published: 2016-02-18

Total Pages: 432

ISBN-13: 0128017864

DOWNLOAD EBOOK

Written by leaders in the field of chemosensation, Chemosensory Transduction provides a comprehensive resource for understanding the molecular mechanisms that allow animals to detect their chemical world. The text focuses on mammals, but also includes several chapters on chemosensory transduction mechanisms in lower vertebrates and insects. This book examines transduction mechanisms in the olfactory, taste, and somatosensory (chemesthetic) systems as well as in a variety of internal sensors that are responsible for homeostatic regulation of the body. Chapters cover such topics as social odors in mammals, vertebrate and invertebrate olfactory receptors, peptide signaling in taste and gut nutrient sensing. Includes a foreword by preeminent olfactory scientist Stuart Firestein, Chair of Columbia University's Department of Biological Sciences in New York, NY. Chemosensory Transduction describes state-of-the-art approaches and key findings related to the study of the chemical senses. Thus, it serves as the go-to reference for this subject for practicing scientists and students with backgrounds in sensory biology and/or neurobiology. The volume will also be valuable for industry researchers engaged in the design or testing of flavors, fragrances, foods and/or pharmaceuticals. - Provides a comprehensive overview for all chemosensory transduction mechanisms - Valuable for academics focused on sensory biology, neurobiology, and chemosensory transduction, as well as industry researchers in new flavor, fragrance, and food testing - Edited by leading experts in the field of olfactory transduction - Focuses on mammals, but lower vertebrates and invertebrate model systems are also included


Neurobiology of Chemical Communication

Neurobiology of Chemical Communication

Author: Carla Mucignat-Caretta

Publisher: CRC Press

Published: 2014-02-14

Total Pages: 614

ISBN-13: 1466553413

DOWNLOAD EBOOK

Intraspecific communication involves the activation of chemoreceptors and subsequent activation of different central areas that coordinate the responses of the entire organism—ranging from behavioral modification to modulation of hormones release. Animals emit intraspecific chemical signals, often referred to as pheromones, to advertise their presence to members of the same species and to regulate interactions aimed at establishing and regulating social and reproductive bonds. In the last two decades, scientists have developed a greater understanding of the neural processing of these chemical signals. Neurobiology of Chemical Communication explores the role of the chemical senses in mediating intraspecific communication. Providing an up-to-date outline of the most recent advances in the field, it presents data from laboratory and wild species, ranging from invertebrates to vertebrates, from insects to humans. The book examines the structure, anatomy, electrophysiology, and molecular biology of pheromones. It discusses how chemical signals work on different mammalian and non-mammalian species and includes chapters on insects, Drosophila, honey bees, amphibians, mice, tigers, and cattle. It also explores the controversial topic of human pheromones. An essential reference for students and researchers in the field of pheromones, this is also an ideal resource for those working on behavioral phenotyping of animal models and persons interested in the biology/ecology of wild and domestic species.