Information Theory Tools for Image Processing

Information Theory Tools for Image Processing

Author: Miquel Feixas

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 148

ISBN-13: 3031795555

DOWNLOAD EBOOK

Information Theory (IT) tools, widely used in many scientific fields such as engineering, physics, genetics, neuroscience, and many others, are also useful transversal tools in image processing. In this book, we present the basic concepts of IT and how they have been used in the image processing areas of registration, segmentation, video processing, and computational aesthetics. Some of the approaches presented, such as the application of mutual information to registration, are the state of the art in the field. All techniques presented in this book have been previously published in peer-reviewed conference proceedings or international journals. We have stressed here their common aspects, and presented them in an unified way, so to make clear to the reader which problems IT tools can help to solve, which specific tools to use, and how to apply them. The IT basics are presented so as to be self-contained in the book. The intended audiences are students and practitioners of image processing and related areas such as computer graphics and visualization. In addition, students and practitioners of IT will be interested in knowing about these applications. Table of Contents: Preface / Acknowledgments / Information Theory Basics / Image Registration / Image Segmentation / Video Key Frame Selection / Informational Aesthetics Measures / Bibliography / Authors' Biographies


Information Theory Tools for Visualization

Information Theory Tools for Visualization

Author: Min Chen

Publisher: CRC Press

Published: 2016-09-19

Total Pages: 146

ISBN-13: 1315352230

DOWNLOAD EBOOK

This book explores Information theory (IT) tools, which have become state of the art to solve and understand better many of the problems in visualization. This book covers all relevant literature up to date. It is the first book solely devoted to this subject, written by leading experts in the field.


Information Theory in Computer Vision and Pattern Recognition

Information Theory in Computer Vision and Pattern Recognition

Author: Francisco Escolano Ruiz

Publisher: Springer Science & Business Media

Published: 2009-07-14

Total Pages: 375

ISBN-13: 1848822979

DOWNLOAD EBOOK

Information theory has proved to be effective for solving many computer vision and pattern recognition (CVPR) problems (such as image matching, clustering and segmentation, saliency detection, feature selection, optimal classifier design and many others). Nowadays, researchers are widely bringing information theory elements to the CVPR arena. Among these elements there are measures (entropy, mutual information...), principles (maximum entropy, minimax entropy...) and theories (rate distortion theory, method of types...). This book explores and introduces the latter elements through an incremental complexity approach at the same time where CVPR problems are formulated and the most representative algorithms are presented. Interesting connections between information theory principles when applied to different problems are highlighted, seeking a comprehensive research roadmap. The result is a novel tool both for CVPR and machine learning researchers, and contributes to a cross-fertilization of both areas.


Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms

Author: David J. C. MacKay

Publisher: Cambridge University Press

Published: 2003-09-25

Total Pages: 694

ISBN-13: 9780521642989

DOWNLOAD EBOOK

Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.


Elements of Information Theory

Elements of Information Theory

Author: Thomas M. Cover

Publisher: John Wiley & Sons

Published: 2012-11-28

Total Pages: 788

ISBN-13: 1118585771

DOWNLOAD EBOOK

The latest edition of this classic is updated with new problem sets and material The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory. All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points. The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated references Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.


Advances in Info-Metrics

Advances in Info-Metrics

Author: Min Chen

Publisher: Oxford University Press

Published: 2020-11-14

Total Pages: 557

ISBN-13: 0190636718

DOWNLOAD EBOOK

Info-metrics is a framework for modeling, reasoning, and drawing inferences under conditions of noisy and insufficient information. It is an interdisciplinary framework situated at the intersection of information theory, statistical inference, and decision-making under uncertainty. In Advances in Info-Metrics, Min Chen, J. Michael Dunn, Amos Golan, and Aman Ullah bring together a group of thirty experts to expand the study of info-metrics across the sciences and demonstrate how to solve problems using this interdisciplinary framework. Building on the theoretical underpinnings of info-metrics, the volume sheds new light on statistical inference, information, and general problem solving. The book explores the basis of information-theoretic inference and its mathematical and philosophical foundations. It emphasizes the interrelationship between information and inference and includes explanations of model building, theory creation, estimation, prediction, and decision making. Each of the nineteen chapters provides the necessary tools for using the info-metrics framework to solve a problem. The collection covers recent developments in the field, as well as many new cross-disciplinary case studies and examples. Designed to be accessible for researchers, graduate students, and practitioners across disciplines, this book provides a clear, hands-on experience for readers interested in solving problems when presented with incomplete and imperfect information.


Information Theory

Information Theory

Author: Imre Csiszár

Publisher: Elsevier

Published: 2014-07-10

Total Pages: 465

ISBN-13: 1483281574

DOWNLOAD EBOOK

Information Theory: Coding Theorems for Discrete Memoryless Systems presents mathematical models that involve independent random variables with finite range. This three-chapter text specifically describes the characteristic phenomena of information theory. Chapter 1 deals with information measures in simple coding problems, with emphasis on some formal properties of Shannon's information and the non-block source coding. Chapter 2 describes the properties and practical aspects of the two-terminal systems. This chapter also examines the noisy channel coding problem, the computation of channel capacity, and the arbitrarily varying channels. Chapter 3 looks into the theory and practicality of multi-terminal systems. This book is intended primarily for graduate students and research workers in mathematics, electrical engineering, and computer science.


Signal and Image Multiresolution Analysis

Signal and Image Multiresolution Analysis

Author: Abdeldjalil Ouahabi

Publisher: John Wiley & Sons

Published: 2012-12-27

Total Pages: 260

ISBN-13: 1118568664

DOWNLOAD EBOOK

Multiresolution analysis using the wavelet transform has received considerable attention in recent years by researchers in various fields. It is a powerful tool for efficiently representing signals and images at multiple levels of detail with many inherent advantages, including compression, level-of-detail display, progressive transmission, level-of-detail editing, filtering, modeling, fractals and multifractals, etc. This book aims to provide a simple formalization and new clarity on multiresolution analysis, rendering accessible obscure techniques, and merging, unifying or completing the technique with encoding, feature extraction, compressive sensing, multifractal analysis and texture analysis. It is aimed at industrial engineers, medical researchers, university lab attendants, lecturer-researchers and researchers from various specializations. It is also intended to contribute to the studies of graduate students in engineering, particularly in the fields of medical imaging, intelligent instrumentation, telecommunications, and signal and image processing. Given the diversity of the problems posed and addressed, this book paves the way for the development of new research themes, such as brain–computer interface (BCI), compressive sensing, functional magnetic resonance imaging (fMRI), tissue characterization (bones, skin, etc.) and the analysis of complex phenomena in general. Throughout the chapters, informative illustrations assist the uninitiated reader in better conceptualizing certain concepts, taking the form of numerous figures and recent applications in biomedical engineering, communication, multimedia, finance, etc.


Systems, Signals and Image Processing

Systems, Signals and Image Processing

Author: Gregor Rozinaj

Publisher: Springer Nature

Published: 2022-03-01

Total Pages: 232

ISBN-13: 3030968782

DOWNLOAD EBOOK

This volume constitutes selected papers presented at the 28th International Conference on Systems, Signals and Image Processing, IWSSIP 2021, held in Bratislava, Slovakia, in June 2021. Due to the COVID-19 pandemic the conference was held online. The presented 14 full and 5 short papers were thorougly reviewed and selected from the 76 submissions. The papers focus on various aspects of advanced signal processing in different scientific areas, including filter design, Fourier and other transforms, feature extraction, machine learning and system adaptation to user-oriented products like 5G networks, IoT, virtual teleport or tele-surgery operations.


Current Problems in Applied Mathematics and Computer Science and Systems

Current Problems in Applied Mathematics and Computer Science and Systems

Author: Anatoly Alikhanov

Publisher: Springer Nature

Published: 2023-06-05

Total Pages: 528

ISBN-13: 3031341279

DOWNLOAD EBOOK

This book is based on the best papers accepted for presentation during the International Conference on Actual Problems of Applied Mathematics and Computer Systems (APAMCS-2022), Russia. The book includes research materials on modern mathematical problems, solutions in the field of scientific computing, data analysis and modular computing. The scope of numerical methods in scientific computing presents original research, including mathematical models and software implementations, related to the following topics: numerical methods in scientific computing; solving optimization problems; methods for approximating functions, etc. The studies in data analysis and modular computing include contributions in the field of deep learning, neural networks, mathematical statistics, machine learning methods, residue number system and artificial intelligence. Finally, the book gives insights into the fundamental problems in mathematics education. The book intends for readership specializing in the field of scientific computing, parallel computing, computer technology, machine learning, information security and mathematical education.