This book proposes a solution to the problem of incorrect use of automation tools to perform complex design work. Currently, a large number of start-up projects are non-professional design bureaus that show a huge amount of their achievements. In reality, most of these achievements burst like soap bubbles. This is due to the low-quality and inefficient use of information technology in this industry. The book highlights advanced information technologies in the fields of design, machine learning, and computer vision.
An indispensable reference for aerospace designers, analysts and students. This fifth revised and enlarged edition of this classic, indispensable, and practical guide provides a condensed collection of commonly used engineering reference data specifically related to aerospace design. New material on air breathing propulsion, systems engineering, and radar cross section has been added to reflect recent data in aircraft design. Features: New material on air breathing propulsion, systems engineering, and radar cross section Most commonly used formulas and data for aerospace design Convenient size and binding Large, easy-to-read tables, charts, and figures Handy reference for everyday use Developed by aerospace professionals AIAA Aerospace Design Engineers Guide is an essential tool for every design engineer and every aspiring aerospace engineering student.
Aerospace engineering is the discipline of engineering that deals with the development of aircraft and spacecraft. Aeronautical engineering and astronautical engineering are the two branches of aerospace engineering. Aeronautical engineering is concerned with the study, design and manufacturing of air flight capable machines, whereas astronautically engineering is linked to the field of rocket science. The interaction between technologies like aerodynamics, propulsion, avionics, materials science, structural analysis and manufacturing is characterised as aerospace engineering. It includes elements like radar cross section, flight test, aero acoustics, noise control, risk and reliability, solid mechanics etc. Theoretical physics is the basis of most of these elements that fall under aerospace engineering. This book unravels the recent studies in the field of aerospace engineering. Also included herein is a detailed explanation of the various concepts and applications of aerospace engineering. Through this book, we attempt to further enlighten the readers about the new concepts in this field.
This book explores the main concepts, algorithms, and techniques of Machine Learning and data mining for aerospace technology. Satellites are the ‘eagle eyes’ that allow us to view massive areas of the Earth simultaneously, and can gather more data, more quickly, than tools on the ground. Consequently, the development of intelligent health monitoring systems for artificial satellites – which can determine satellites’ current status and predict their failure based on telemetry data – is one of the most important current issues in aerospace engineering. This book is divided into three parts, the first of which discusses central problems in the health monitoring of artificial satellites, including tensor-based anomaly detection for satellite telemetry data and machine learning in satellite monitoring, as well as the design, implementation, and validation of satellite simulators. The second part addresses telemetry data analytics and mining problems, while the last part focuses on security issues in telemetry data.
With the emergence of smart technology and automated systems in today’s world, artificial intelligence (AI) is being incorporated into an array of professions. The aviation and aerospace industry, specifically, is a field that has seen the successful implementation of early stages of automation in daily flight operations through flight management systems and autopilot. However, the effectiveness of aviation systems and the provision of flight safety still depend primarily upon the reliability of aviation specialists and human decision making. The Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries is a pivotal reference source that explores best practices for AI implementation in aviation to enhance security and the ability to learn, improve, and predict. While highlighting topics such as computer-aided design, automated systems, and human factors, this publication explores the enhancement of global aviation security as well as the methods of modern information systems in the aeronautics industry. This book is ideally designed for pilots, scientists, engineers, aviation operators, air crash investigators, teachers, academicians, researchers, and students seeking current research on the application of AI in the field of aviation.
This book contains all refereed papers that were accepted to the second edition of the « Complex Systems Design & Management » (CSDM 2011) international conference that took place in Paris (France) from December 7 to December 9, 2011. (Website: http://www.csdm2011.csdm.fr/). These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (transport, defense & security, electronics, energy & environment, e-services), scientific & technical topics (systems fundamentals, systems architecture& engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSDM 2011 conference is organized under the guidance of the CESAMES non-profit organization (http://www.cesames.net/).