Analysis of Toeplitz Operators

Analysis of Toeplitz Operators

Author: Albrecht Böttcher

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 511

ISBN-13: 366202652X

DOWNLOAD EBOOK

A revised introduction to the advanced analysis of block Toeplitz operators including recent research. This book builds on the success of the first edition which has been used as a standard reference for fifteen years. Topics range from the analysis of locally sectorial matrix functions to Toeplitz and Wiener-Hopf determinants. This will appeal to both graduate students and specialists in the theory of Toeplitz operators.


Traces and Determinants of Linear Operators

Traces and Determinants of Linear Operators

Author: Israel Gohberg

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 261

ISBN-13: 303488401X

DOWNLOAD EBOOK

This book is dedicated to a theory of traces and determinants on embedded algebras of linear operators, where the trace and determinant are extended from finite rank operators by a limit process. The self-contained material should appeal to a wide group of mathematicians and engineers, and is suitable for teaching.


Infinite Matrices and their Finite Sections

Infinite Matrices and their Finite Sections

Author: Marko Lindner

Publisher: Springer Science & Business Media

Published: 2006-11-10

Total Pages: 203

ISBN-13: 3764377674

DOWNLOAD EBOOK

This book is concerned with the study of infinite matrices and their approximation by matrices of finite size. The main concepts presented are invertibility at infinity (closely related to Fredholmness), limit operators, and the stability and convergence of finite matrix approximations. Concrete examples are used to illustrate the results throughout, including discrete Schrödinger operators and integral and boundary integral operators arising in mathematical physics and engineering.


Infinite Matrices and Their Recent Applications

Infinite Matrices and Their Recent Applications

Author: P.N. Shivakumar

Publisher: Springer

Published: 2016-06-20

Total Pages: 124

ISBN-13: 3319301802

DOWNLOAD EBOOK

This monograph covers the theory of finite and infinite matrices over the fields of real numbers, complex numbers and over quaternions. Emphasizing topics such as sections or truncations and their relationship to the linear operator theory on certain specific separable and sequence spaces, the authors explore techniques like conformal mapping, iterations and truncations that are used to derive precise estimates in some cases and explicit lower and upper bounds for solutions in the other cases. Most of the matrices considered in this monograph have typically special structures like being diagonally dominated or tridiagonal, possess certain sign distributions and are frequently nonsingular. Such matrices arise, for instance, from solution methods for elliptic partial differential equations. The authors focus on both theoretical and computational aspects concerning infinite linear algebraic equations, differential systems and infinite linear programming, among others. Additionally, the authors cover topics such as Bessel’s and Mathieu’s equations, viscous fluid flow in doubly connected regions, digital circuit dynamics and eigenvalues of the Laplacian.


Trace Ideals and Their Applications

Trace Ideals and Their Applications

Author: Barry Simon

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 162

ISBN-13: 0821849883

DOWNLOAD EBOOK

From a review of the first edition: Beautifully written and well organized ... indispensable for those interested in certain areas of mathematical physics ... for the expert and beginner alike. The author deserves to be congratulated both for his work in unifying a subject and for showing workers in the field new directions for future development. --Zentralblatt MATH This is a second edition of a well-known book on the theory of trace ideals in the algebra of operators in a Hilbert space. Because of the theory's many different applications, the book was widely used and much in demand. For this second edition, the author has added four chapters on the closely related theory of rank one perturbations of self-adjoint operators. He has also included a comprehensive index and an addendum describing some developments since the original notes were published. This book continues to be a vital source of information for those interested in the theory of trace ideals and in its applications to various areas of mathematical physics.


Limit Operators, Collective Compactness, and the Spectral Theory of Infinite Matrices

Limit Operators, Collective Compactness, and the Spectral Theory of Infinite Matrices

Author: Simon N. Chandler-Wilde

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 126

ISBN-13: 0821852434

DOWNLOAD EBOOK

In the first half of this memoir the authors explore the interrelationships between the abstract theory of limit operators (see e.g. the recent monographs of Rabinovich, Roch and Silbermann (2004) and Lindner (2006)) and the concepts and results of the generalised collectively compact operator theory introduced by Chandler-Wilde and Zhang (2002). They build up to results obtained by applying this generalised collectively compact operator theory to the set of limit operators of an operator $A$ (its operator spectrum). In the second half of this memoir the authors study bounded linear operators on the generalised sequence space $\ell^p(\mathbb{Z}^N,U)$, where $p\in [1,\infty]$ and $U$ is some complex Banach space. They make what seems to be a more complete study than hitherto of the connections between Fredholmness, invertibility, invertibility at infinity, and invertibility or injectivity of the set of limit operators, with some emphasis on the case when the operator $A$ is a locally compact perturbation of the identity. Especially, they obtain stronger results than previously known for the subtle limiting cases of $p=1$ and $\infty$.


Operator Theory, Operator Algebras, and Matrix Theory

Operator Theory, Operator Algebras, and Matrix Theory

Author: Carlos André

Publisher: Birkhäuser

Published: 2018-08-22

Total Pages: 381

ISBN-13: 3319724495

DOWNLOAD EBOOK

This book consists of invited survey articles and research papers in the scientific areas of the “International Workshop on Operator Algebras, Operator Theory and Applications,” which was held in Lisbon in July 2016. Reflecting recent developments in the field of algebras of operators, operator theory and matrix theory, it particularly focuses on groupoid algebras and Fredholm conditions, algebras of approximation sequences, C* algebras of convolution type operators, index theorems, spectrum and numerical range of operators, extreme supercharacters of infinite groups, quantum dynamics and operator algebras, and inverse eigenvalue problems. Establishing bridges between the three related areas of operator algebras, operator theory, and matrix theory, the book is aimed at researchers and graduate students who use results from these areas.


Linear Operators and Matrices

Linear Operators and Matrices

Author: Israel Gohberg

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 282

ISBN-13: 3034881819

DOWNLOAD EBOOK

In September 1998, during the 'International Workshop on Analysis and Vibrat ing Systems' held in Canmore, Alberta, Canada, it was decided by a group of participants to honour Peter Lancaster on the occasion of his 70th birthday with a volume in the series 'Operator Theory: Advances and Applications'. Friends and colleagues responded enthusiastically to this proposal and within a short time we put together the volume which is now presented to the reader. Regarding accep tance of papers we followed the usual rules of the journal 'Integral Equations and Operator Theory'. The papers are dedicated to different problems in matrix and operator theory, especially to the areas in which Peter contributed so richly. At our request, Peter agreed to write an autobiographical paper, which appears at the beginning of the volume. It continues with the list of Peter's publications. We believe that this volume will pay tribute to Peter on his outstanding achievements in different areas of mathematics. 1. Gohberg, H. Langer P ter Lancast r *1929 Operator Theory: Advances and Applications, Vol. 130, 1- 7 © 2001 Birkhiiuser Verlag Basel/Switzerland My Life and Mathematics Peter Lancaster I was born in Appleby, a small county town in the north of England, on November 14th, 1929. I had two older brothers and was to have one younger sister. My family moved around the north of England as my father's work in an insurance company required.