Infinite Algebraic Extensions of Finite Fields

Infinite Algebraic Extensions of Finite Fields

Author: Joel V. Brawley

Publisher: American Mathematical Soc.

Published: 1989

Total Pages: 126

ISBN-13: 0821851012

DOWNLOAD EBOOK

Over the last several decades there has been a renewed interest in finite field theory, partly as a result of important applications in a number of diverse areas such as electronic communications, coding theory, combinatorics, designs, finite geometries, cryptography, and other portions of discrete mathematics. In addition, a number of recent books have been devoted to the subject. Despite the resurgence in interest, it is not widely known that many results concerning finite fields have natural generalizations to abritrary algebraic extensions of finite fields. The purpose of this book is to describe these generalizations. After an introductory chapter surveying pertinent results about finite fields, the book describes the lattice structure of fields between the finite field $GF(q)$ and its algebraic closure $\Gamma (q)$. The authors introduce a notion, due to Steinitz, of an extended positive integer $N$ which includes each ordinary positive integer $n$ as a special case. With the aid of these Steinitz numbers, the algebraic extensions of $GF(q)$ are represented by symbols of the form $GF(q^N)$. When $N$ is an ordinary integer $n$, this notation agrees with the usual notation $GF(q^n)$ for a dimension $n$ extension of $GF(q)$. The authors then show that many of the finite field results concerning $GF(q^n)$ are also true for $GF(q^N)$. One chapter is devoted to giving explicit algorithms for computing in several of the infinite fields $GF(q^N)$ using the notion of an explicit basis for $GF(q^N)$ over $GF(q)$. Another chapter considers polynomials and polynomial-like functions on $GF(q^N)$ and contains a description of several classes of permutation polynomials, including the $q$-polynomials and the Dickson polynomials. Also included is a brief chapter describing two of many potential applications. Aimed at the level of a beginning graduate student or advanced undergraduate, this book could serve well as a supplementary text for a course in finite field theory.


Algebraic Extensions of Fields

Algebraic Extensions of Fields

Author: Paul J. McCarthy

Publisher: Courier Corporation

Published: 2014-01-07

Total Pages: 194

ISBN-13: 048678147X

DOWNLOAD EBOOK

Graduate-level coverage of Galois theory, especially development of infinite Galois theory; theory of valuations, prolongation of rank-one valuations, more. Over 200 exercises. Bibliography. "...clear, unsophisticated and direct..." — Math.


Topics in Galois Theory

Topics in Galois Theory

Author: Jean-Pierre Serre

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 120

ISBN-13: 1439865256

DOWNLOAD EBOOK

This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt constructi


p-adic Numbers

p-adic Numbers

Author: Fernando Q. Gouvea

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 285

ISBN-13: 3662222787

DOWNLOAD EBOOK

p-adic numbers are of great theoretical importance in number theory, since they allow the use of the language of analysis to study problems relating toprime numbers and diophantine equations. Further, they offer a realm where one can do things that are very similar to classical analysis, but with results that are quite unusual. The book should be of use to students interested in number theory, but at the same time offers an interesting example of the many connections between different parts of mathematics. The book strives to be understandable to an undergraduate audience. Very little background has been assumed, and the presentation is leisurely. There are many problems, which should help readers who are working on their own (a large appendix with hints on the problem is included). Most of all, the book should offer undergraduates exposure to some interesting mathematics which is off the beaten track. Those who will later specialize in number theory, algebraic geometry, and related subjects will benefit more directly, but all mathematics students can enjoy the book.


Field and Galois Theory

Field and Galois Theory

Author: Patrick Morandi

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 294

ISBN-13: 1461240409

DOWNLOAD EBOOK

In the fall of 1990, I taught Math 581 at New Mexico State University for the first time. This course on field theory is the first semester of the year-long graduate algebra course here at NMSU. In the back of my mind, I thought it would be nice someday to write a book on field theory, one of my favorite mathematical subjects, and I wrote a crude form of lecture notes that semester. Those notes sat undisturbed for three years until late in 1993 when I finally made the decision to turn the notes into a book. The notes were greatly expanded and rewritten, and they were in a form sufficient to be used as the text for Math 581 when I taught it again in the fall of 1994. Part of my desire to write a textbook was due to the nonstandard format of our graduate algebra sequence. The first semester of our sequence is field theory. Our graduate students generally pick up group and ring theory in a senior-level course prior to taking field theory. Since we start with field theory, we would have to jump into the middle of most graduate algebra textbooks. This can make reading the text difficult by not knowing what the author did before the field theory chapters. Therefore, a book devoted to field theory is desirable for us as a text. While there are a number of field theory books around, most of these were less complete than I wanted.


Topics in Galois Fields

Topics in Galois Fields

Author: Dirk Hachenberger

Publisher: Springer Nature

Published: 2020-09-29

Total Pages: 785

ISBN-13: 3030608069

DOWNLOAD EBOOK

This monograph provides a self-contained presentation of the foundations of finite fields, including a detailed treatment of their algebraic closures. It also covers important advanced topics which are not yet found in textbooks: the primitive normal basis theorem, the existence of primitive elements in affine hyperplanes, and the Niederreiter method for factoring polynomials over finite fields. We give streamlined and/or clearer proofs for many fundamental results and treat some classical material in an innovative manner. In particular, we emphasize the interplay between arithmetical and structural results, and we introduce Berlekamp algebras in a novel way which provides a deeper understanding of Berlekamp's celebrated factorization algorithm. The book provides a thorough grounding in finite field theory for graduate students and researchers in mathematics. In view of its emphasis on applicable and computational aspects, it is also useful for readers working in information and communication engineering, for instance, in signal processing, coding theory, cryptography or computer science.


Galois Theory of p-Extensions

Galois Theory of p-Extensions

Author: Helmut Koch

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 196

ISBN-13: 3662049678

DOWNLOAD EBOOK

Helmut Koch's classic is now available in English. Competently translated by Franz Lemmermeyer, it introduces the theory of pro-p groups and their cohomology. The book contains a postscript on the recent development of the field written by H. Koch and F. Lemmermeyer, along with many additional recent references.


Galois Theory Through Exercises

Galois Theory Through Exercises

Author: Juliusz Brzeziński

Publisher: Springer

Published: 2018-03-21

Total Pages: 296

ISBN-13: 331972326X

DOWNLOAD EBOOK

This textbook offers a unique introduction to classical Galois theory through many concrete examples and exercises of varying difficulty (including computer-assisted exercises). In addition to covering standard material, the book explores topics related to classical problems such as Galois’ theorem on solvable groups of polynomial equations of prime degrees, Nagell's proof of non-solvability by radicals of quintic equations, Tschirnhausen's transformations, lunes of Hippocrates, and Galois' resolvents. Topics related to open conjectures are also discussed, including exercises related to the inverse Galois problem and cyclotomic fields. The author presents proofs of theorems, historical comments and useful references alongside the exercises, providing readers with a well-rounded introduction to the subject and a gateway to further reading. A valuable reference and a rich source of exercises with sample solutions, this book will be useful to both students and lecturers. Its original concept makes it particularly suitable for self-study.


Advanced Algebra

Advanced Algebra

Author: Anthony W. Knapp

Publisher: Springer Science & Business Media

Published: 2007-10-11

Total Pages: 757

ISBN-13: 0817646132

DOWNLOAD EBOOK

Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Advanced Algebra includes chapters on modern algebra which treat various topics in commutative and noncommutative algebra and provide introductions to the theory of associative algebras, homological algebras, algebraic number theory, and algebraic geometry. Many examples and hundreds of problems are included, along with hints or complete solutions for most of the problems. Together the two books give the reader a global view of algebra and its role in mathematics as a whole.


Abstract Algebra

Abstract Algebra

Author: Thomas Judson

Publisher: Orthogonal Publishing L3c

Published: 2023-08-11

Total Pages: 0

ISBN-13: 9781944325190

DOWNLOAD EBOOK

Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.