Inertia-controlling Methods for Quadratic Programming

Inertia-controlling Methods for Quadratic Programming

Author: Philip E. Gill

Publisher:

Published: 1988

Total Pages: 48

ISBN-13:

DOWNLOAD EBOOK

We also derive recurrance relations that facilitate the efficient implementation of a class of inertia-controlling methods that maintain the factorization of a nonsingular matrix associated with the Karush-Kuhn-Tucker conditions."


Active-set Methods for Quadratic Programming

Active-set Methods for Quadratic Programming

Author: Elizabeth Lai Sum Wong

Publisher:

Published: 2011

Total Pages: 125

ISBN-13: 9781124691152

DOWNLOAD EBOOK

Computational methods are considered for finding a point satisfying the second-order necessary conditions for a general (possibly nonconvex) quadratic program (QP). A framework for the formulation and analysis of feasible-point active-set methods is proposed for a generic QP. This framework is defined by reformulating and extending an inertia-controlling method for general QP that was first proposed by Fletcher and subsequently modified by Gould. This reformulation defines a class of methods in which a primal-dual search pair is the solution of a "KKT system'' of equations associated with an equality-constrained QP subproblem defined in terms of a "working set'' of linearly independent constraints. It is shown that, under certain circumstances, the solution of this KKT system may be updated using a simple recurrence relation, thereby giving a significant reduction in the number of systems that need to be solved. The use of inertia control guarantees that the KKT systems remain nonsingular throughout, thereby allowing the utilization of third-party linear algebra software. The algorithm is suitable for indefinite problems, making it an ideal QP solver for stand-alone applications and for use within a sequential quadratic programming method using exact second derivatives. The proposed framework is applied to primal and dual quadratic problems, as well as to single-phase problems that combine the feasibility and optimality phases of the active-set method, producing a range of formats that are suitable for a variety of applications. The algorithm is implemented in the Fortran code icQP. Its performance is evaluated using different symmetric and unsymmetric linear solvers on a set of convex and nonconvex problems. Results are presented that compare the performance of icQP with the convex QP solver SQOPT on a large set of convex problems.


Primal-Dual Interior Methods for Quadratic Programming

Primal-Dual Interior Methods for Quadratic Programming

Author: Anna Shustrova

Publisher:

Published: 2015

Total Pages: 91

ISBN-13: 9781321848700

DOWNLOAD EBOOK

Interior methods are a class of computational methods for solving a con- strained optimization problem. Interior methods follow a continuous path to the solution that passes through the interior of the feasible region (i.e., the set of points that satisfy the constraints). Interior-point methods may also be viewed as methods that replace the constrained problem by a sequence of unconstrained problems in which the objective function is augmented by a weighted \barrier" term that is infinite at the boundary of the feasible region. Convergence to a solution of the constrained problem is achieved by solving a sequence of unconstrained problems in which the weight on the barrier term is steadily reduced to zero. This thesis concerns the formulation and analysis of interior methods for the solution of a quadratic programming (QP) problem, which is an optimization problem with a quadratic objective function and linear constraints. The linear constraints may include an arbitrary mixture of equality and inequality constraints, where the inequality constraints may be subject to lower and/or upper bounds. QP problems arise in a wide variety of applications. An important application is in sequential quadratic programming methods for nonlinear optimization, which involve minimizing a sequence of QP subproblems based on a quadratic approximation of the nonlinear objective function and a set of linearized nonlinear constraints. Two new interior methods for QP are proposed. Each is based on the properties of a barrier function defined in terms of both the primal and dual variables. The first method is suitable for a QP with all inequality constraints. At each iteration, the Newton equations for minimizing a quadratic model of the primal-dual barrier function are reformulated in terms of a symmetric indefinite system of equations that is solved using an inertia controlling factorization. This factorization provides an effective method for the detection and convexification of nonconvex problems. The second method is intended for problems with a mixture of equality and inequality constraints. In this case, the QP constraints are converted to so-called standard form and a primal-dual augmented Lagrangian is used to ensure the feasibility of the equality constraints in the limit.


A Single-phase Method for Quadratic Programming

A Single-phase Method for Quadratic Programming

Author: Stanford University. Systems Optimization Laboratory

Publisher:

Published: 1986

Total Pages: 80

ISBN-13:

DOWNLOAD EBOOK

This report describes a single-phase quadratic programming method, an active-set method which solves a sequence of equality-constraint quadratic programs.


A Regularized Active-set Method for Sparse Convex Quadratic Programming

A Regularized Active-set Method for Sparse Convex Quadratic Programming

Author: Christopher Mario Maes

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

An active-set algorithm is developed for solving convex quadratic programs (QPs). The algorithm employs primal regularization within a bound-constrained augmented Lagrangian method. This leads to a sequence of QP subproblems that are feasible and strictly convex, and whose KKT systems are guaranteed to be nonsingular for any active set. A simplified, single-phase algorithm becomes possible for each QP subproblem. There is no need to control the inertia of the KKT system defining each search direction, and a simple step-length procedure may be used without risk of cycling in the presence of degeneracy. Since all KKT systems are nonsingular, they can be factored with a variety of sparse direct linear solvers. Block-LU updates of the KKT factors allow for active-set changes. The principal benefit of primal and dual regularization is that warm starts are possible from any given active set. This is vital inside sequential quadratic programming (SQP) methods for nonlinear optimization, such as the SNOPT solver. The method provides a reliable approach to solving sparse generalized least-squares problems. Ordinary least-squares problems with Tikhonov regularization and bounds can be solved as a single QP subproblem. The algorithm is implemented as the QPBLUR solver (Matlab and Fortran 95 versions) and the Fortran version has been integrated into SNOPT. The performance of QPBLUR is evaluated on a test set of large convex QPs, and on the sequences of QPs arising from SNOPT's SQP method.


Mixed Integer Nonlinear Programming

Mixed Integer Nonlinear Programming

Author: Jon Lee

Publisher: Springer Science & Business Media

Published: 2011-12-02

Total Pages: 687

ISBN-13: 1461419271

DOWNLOAD EBOOK

Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.