Dynamics of Gas-Surface Scattering

Dynamics of Gas-Surface Scattering

Author: Frank O. Goodman

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 352

ISBN-13: 0323154611

DOWNLOAD EBOOK

Dynamics of Gas-Surface Scattering deals with the dynamics of scattering as inferred from known properties of gases and solids. This book discusses measurements of spatial distributions of scattered atomic and molecular streams, and of the energy and momentum which gas particles exchange at solid surfaces. It also considers two regimes of scattering, both of which are associated with a lower range of incident gas energies: the thermal and structure scattering regimes. Comprised of 10 chapters, this book opens with a brief historical overview of the early experiments that investigated the dynamics of scattering of gases by surfaces. The discussion then turns to some elements of the kinetic theory of gases; intermodular potentials and interaction regimes; and classical-mechanical lattice models used in gas-surface scattering theory. The applications of molecular beams to the study of gas-surface scattering phenomena are also described. The remaining chapters focus on experiments and theories on scattering of molecular streams by surfaces of solids, with emphasis on thermal and structure regimes of inelastic scattering; quantum theory of gas-surface scattering; and quantum mechanical scattering phenomena. This text concludes with an analysis of energy exchange processes that may occur when a solid surface is completely immersed in a still gas. This monograph will be a valuable resource for students and practitioners of physics, chemistry, and applied mathematics.


Dynamics of Gas-Surface Interaction

Dynamics of Gas-Surface Interaction

Author: Giorgio Benedek

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 295

ISBN-13: 3642864554

DOWNLOAD EBOOK

In recent decades surface science has experienced a large growth in connection with the development of various experimental techniques which are able to characterize solid surfaces through the observation of the scattering of ions, electrons, photons or atoms. These methods of investigation, known under different labels such as LEED, AES, XPS, UPS, etc. have been extensively applied in describing the structure, morphology, and chemical and physical properties of crystal surfaces and interfaces of a large variety of materials of interest in solid-state physics, electronics, metallurgy, biophysics, and heterogeneous catalysis. Among these methods we wish to emphasize molecular beam scattering from solid surfaces. ~lolecular beam scattering has gone through a large development in the last ten years. In this decade a large number of laboratories have used this method to study various clean and adsorbate-covered surfaces. The technique is nonetheless quite old. It dates back to the beginning of the thirties, when Estermann and Stern performed the first atom diffraction experiment proving the wave nature of atoms. In the following years the entire subject of gas-surface interaction was considered a branch of rarefied gas dynamics and developed in connection with aerospace research. Attention was then given to the integral properties of gas-solid interactions (sticking and energy accomodation, mean momentum transfer) rather than to atom-surface scatter ing from well-characterized surfaces.


Dynamics

Dynamics

Author:

Publisher: Elsevier

Published: 2008-10-09

Total Pages: 1037

ISBN-13: 0080931200

DOWNLOAD EBOOK

This volume of the Handbook of Surface Science covers all aspects of the dynamics of surface processes. Two dozen world leading experts in this field address the subjects of energy exchange in gas atoms, surface collisions, the rules governing dissociative adsorption on surfaces, the formation of nanostructures on surfaces by self-assembly, and the study of surface phenomena using ultra-fast lasers. The chapters are written for both newcomers to the field as well as researchers.• Covers all aspects of the dynamics of surface processes • Provides understanding of this unique field utilizing a multitude of accurate experiments and advanced microscopic theory that allows quantum-level comparisons • Presents the concepts and tools relevant beyond surface science for catalysis, nanotechnology, biology, medicine, and materials


Atomic Scale Dynamics at Surfaces

Atomic Scale Dynamics at Surfaces

Author: Giorgio Benedek

Publisher: Springer

Published: 2018-12-28

Total Pages: 647

ISBN-13: 3662564432

DOWNLOAD EBOOK

Experimental advances in helium atom scattering spectroscopy over the last forty years have allowed the measurement of surface phonon dispersion curves of more than 200 different crystal surfaces and overlayers of insulators, semiconductors and metals. The first part of the book presents, at a tutorial level, the fundamental concepts and methods in surface lattice dynamics, and the theory of atom-surface interaction and inelastic scattering in their various approximations, up to the recent electron-phonon theory of helium atom scattering from conducting surfaces. The second part of the book, after introducing the experimentalist to He-atom spectrometers and the rich phenomenology of helium atom scattering from corrugated surfaces, illustrates the most significant experimental results on the surface phonon dispersion curves of various classes of insulators, semiconductors, metals, layered crystals, topological insulators, complex surfaces, adsorbates, ultra-thin films and clusters. The great potential of helium atom scattering for the study of atomic scale diffusion, THz surface collective excitations, including acoustic surface plasmons, and the future prospects of helium atom scattering are presented in the concluding chapters. The book will be valuable reading for all researchers and graduate students interested in dynamical processes at surfaces.


Interaction of Gases with Surfaces

Interaction of Gases with Surfaces

Author: Alexander V. Bogdanov

Publisher: Springer Science & Business Media

Published: 2008-09-11

Total Pages: 140

ISBN-13: 3540491074

DOWNLOAD EBOOK

Interface phenomena are most fascinating because of the mixing of different scales and the interference of diverse physical processes. This makes it necessary to use different levels of description: microscopic, kinetic, and gas-dynamical. A unified quasiclassical approach is used to answer practical questions dealing with inelastic gas-surface scattering, the kinetics of adsorption layers, the evolution of inhomogeneities and defects at the surface, the Knudsen layer, the development of boundary conditions on the kinetic and gas-dynamical levels, the determination of exchange and slip coefficients, and so on.


Fundamentals of Inelastic Electron Scattering

Fundamentals of Inelastic Electron Scattering

Author: P. Schattschneider

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 205

ISBN-13: 3709188660

DOWNLOAD EBOOK

Electron energy loss spectroscopy (ELS) is a vast subject with a long and honorable history. The problem of stopping power for high energy particles interested the earliest pioneers of quantum mechanics such as Bohr and Bethe, who laid the theoretical foun dations of the subject. The experimental origins might perhaps be traced to the original Franck-Hertz experiment. The modern field includes topics as diverse as low energy reflection electron energy loss studies of surface vibrational modes, the spectroscopy of gases and the modern theory of plasmon excitation in crystals. For the study of ELS in electron microscopy, several historically distinct areas of physics are relevant, including the theory of the Debye Waller factor for virtual inelastic scattering, the use of complex optical potentials, lattice dynamics for crystalline specimens and the theory of atomic ionisation for isolated atoms. However the field of electron energy loss spectroscopy contains few useful texts which can be recommended for students. With the recent appearance of Raether's and Egerton's hooks (see text for references), we have for the first time both a comprehensive review text-due to Raether-and a lucid introductory text which emphasizes experimental aspects-due to Egerton. Raether's text tends to emphasize the recent work on surface plasmons, while the strength of Egerton's book is its treatment of inner shell excitations for microanalysis, based on the use of atomic wavefunctions for crystal electrons.


Surface Dynamics

Surface Dynamics

Author:

Publisher: Elsevier

Published: 2003-11-07

Total Pages: 393

ISBN-13: 0080498345

DOWNLOAD EBOOK

While much of traditional surface science has been concerned with equilibrium properties and simple kinetics, there is a growing effort in the area of dynamical processes at surfaces. This book draws together a series of chapters written by acknowledged experts in the field, which describe progress in a range of specific topics. The emphasis is on chemical reaction dynamics, including both theoretical and experimental approaches and covering work on low index single crystal surfaces, on stepped surfaces and on supported metal clusters. Other processes, such as surface diffusion are also addressed. Further chapters discuss dynamical processes in electronically-induced desorption, and in surface diffusion on semiconductors and metals.- Presents considerable advances in surface science field - Collection of expert reviews in surface dynamics


Encyclopedia of Interfacial Chemistry

Encyclopedia of Interfacial Chemistry

Author:

Publisher: Elsevier

Published: 2018-03-29

Total Pages: 5276

ISBN-13: 0128098945

DOWNLOAD EBOOK

Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions


Surface and Interface Science, Volumes 5 and 6

Surface and Interface Science, Volumes 5 and 6

Author: Klaus Wandelt

Publisher: John Wiley & Sons

Published: 2016-03-14

Total Pages: 1532

ISBN-13: 3527411585

DOWNLOAD EBOOK

In eight volumes, Surface and Interface Science covers all fundamental aspects and offers a comprehensive overview of this research area for scientists working in the field, as well as an introduction for newcomers. Volume 5: Solid-Gas Interfaces I Topics covered: Basics of Adsorption and Desorption Surface Microcalorimetry Adsorption of Rare Gases Adsorption of Alkali and Other Electro-Positive Metals Halogen adsorption on metals Adsorption of Hydrogen Adsorption of Water Adsorption of (Small) Molecules on Metal Surfaces Surface Science Approach to Catalysis Adsorption, Bonding and Reactivity of Unsaturated and Multifunctional Molecules Volume 6: Solid-Gas Interfaces II Topics covered: Adsorption of Large Organic Molecules Chirality of Adsorbates Adsorption on Semiconductor Surfaces Adsorption on Oxide Surfaces Oscillatory Surface Reactions Statistical Surface Thermodynamics Theory of the Dynamics at Surfaces Atomic and Molecular Manipulation