This book discusses conventional as well as unconventional wood drying technologies. It covers fundamental thermophysical and energetic aspects and integrates two complex thermodynamic systems, conventional kilns and heat pumps, aimed at improving the energy performance of dryers and the final quality of dried lumber. It discusses advanced components, kiln energy requirements, modeling, and software and emphasizes dryer/heat pump optimum coupling, control, and energy efficiency. Problems are included in most chapters as practical, numerical examples for process and system/components calculation and design. The book presents promising advancements and R&D challenges and future requirements.
This book discusses conventional as well as unconventional wood drying technologies. It covers fundamental thermophysical and energetic aspects and integrates two complex thermodynamic systems, conventional kilns and heat pumps, aimed at improving the energy performance of dryers and the final quality of dried lumber. It discusses advanced components, kiln energy requirements, modeling, and software and emphasizes dryer/heat pump optimum coupling, control, and energy efficiency. Problems are included in most chapters as practical, numerical examples for process and system/components calculation and design. The book presents promising advancements and R&D challenges and future requirements.
Heat Recovery with Commercial, Institutional, and Industrial Heat Pumps presents the basic concepts and thermodynamic behavior of mechanical vapor compression and recompression. It covers both ammonia water absorption and compression/resorption heat pumps. Including theoretical and practical approaches, the book features numerous solved exercises based on real thermodynamic and climatic parameters and case studies with takeaways from on-site experiences to help the reader better identify the advantages and limitations of each heat pumping technology. The book discusses future implementations of heat recovery heat pump technologies that are among the most energy-efficient and environmentally friendly techniques. This book will interest graduate students studying HVAC, thermal systems, and heat pumps. It will also benefit professionals working with heat pumps, industrial process engineers, manufacturers, and research and design personnel.
Drying of solids is one of the most common, complex, and energy-intensive industrial processes. Conventional dryers offer limited opportunities to increase energy efficiency. Heat pump dryers are more energy and cost effective, as they can recycle drying thermal energy and reduce CO2, particulate, and VOC emissions due to drying. This book provides an introduction to the technology and current best practices and aims to increase the successful industrial implementation of heat pump- assisted dryers. It enables the reader to engage confidently with the technology and provides a wealth of information on theories, current practices, and future directions of the technology. It emphasizes several new design concepts and operating and control strategies, which can be applied to improve the economic and environmental efficiency of the drying process. It answers questions about risks, advantages vs. disadvantages, and impediments and offers solutions to current problems. Discusses heat pump technology in general and its present and future challenges. Describes interesting and promising innovations in drying food, agricultural, and wood products with various heat pump technologies. Treats several technical aspects, from modeling and simulation of drying processes to industrial applications. Emphasizes new design concepts and operating and control strategies to improve the efficiency of the drying process.
Still the Most Complete, Up-To-Date, and Reliable Reference in the FieldDrying is a highly energy-intensive operation and is encountered in nearly all industrial sectors. With rising energy costs and consumer demands for higher quality dried products, it is increasingly important to be aware of the latest developments in industrial drying technolog
Low-Temperature Energy Systems with Applications of Renewable Energy investigates a wide variety of low-temperature energy applications in residential, commercial, institutional, and industrial areas. It addresses the basic principles that form the groundwork for more efficient energy conversion processes and includes detailed practical methods for carrying out these critical processes. This work considers new directions in the engineering use of technical thermodynamics and energy, including more in-depth studies of the use of renewable sources, and includes worked numerical examples, review questions, and practice problems to allow readers to test their own comprehension of the material. With detailed explanations, methods, models, and algorithms, Low-Temperature Energy Systems with Applications of Renewable Energy is a valuable reference for engineers and scientists in the field of renewable energy, as well as energy researchers and academics. - Features end-of chapter review sections with questions and exercises for practical study and utilization. - Presents methods for a great variety of energy applications to improve their energy operations. - Applies real-world data to demonstrate the impact of low-temperature energy systems on renewable energy use today.
Rotary Drum: Fluid Dynamics, Dimensioning Criteria, and Industrial Applications provides in-depth analysis of fluid dynamics in rotary drums. In addition, it provides analysis on the different configurations, including nonconventional ones, diverse industrial applications, and comparison with competing dryer types, as well as the modeling of these devices. Covering important aspects of fluid dynamics in rotary drums, which directly influence the drying performance, the book also considers the significant cost of conventional rotary dryers. It takes into account the scale-up of rotary dryers and the control of product quality during processing, which can leave the final product overdried and overheated, wasting thermal energy. The book serves as a useful reference for researchers, graduate students, and engineers in the field of drying technology.
Presents Drying Breakthroughs for an Array of MaterialsDespite being one of the oldest, most energy-intensive unit operations, industrial drying is perhaps the least scrutinized technique at the microscopic level. Yet in the wake of today's global energy crisis, drying research and development is on the rise. Following in the footsteps of the widel
The definitive text/reference for students, researchers and practicing engineers This book provides comprehensive coverage on refrigeration systems and applications, ranging from the fundamental principles of thermodynamics to food cooling applications for a wide range of sectoral utilizations. Energy and exergy analyses as well as performance assessments through energy and exergy efficiencies and energetic and exergetic coefficients of performance are explored, and numerous analysis techniques, models, correlations and procedures are introduced with examples and case studies. There are specific sections allocated to environmental impact assessment and sustainable development studies. Also featured are discussions of important recent developments in the field, including those stemming from the author’s pioneering research. Refrigeration is a uniquely positioned multi-disciplinary field encompassing mechanical, chemical, industrial and food engineering, as well as chemistry. Its wide-ranging applications mean that the industry plays a key role in national and international economies. And it continues to be an area of active research, much of it focusing on making the technology as environmentally friendly and sustainable as possible without compromising cost efficiency and effectiveness. This substantially updated and revised edition of the classic text/reference now features two new chapters devoted to renewable-energy-based integrated refrigeration systems and environmental impact/sustainability assessment. All examples and chapter-end problems have been updated as have conversion factors and the thermophysical properties of an array of materials. Provides a solid foundation in the fundamental principles and the practical applications of refrigeration technologies Examines fundamental aspects of thermodynamics, refrigerants, as well as energy and exergy analyses and energy and exergy based performance assessment criteria and approaches Introduces environmental impact assessment methods and sustainability evaluation of refrigeration systems and applications Covers basic and advanced (and hence integrated) refrigeration cycles and systems, as well as a range of novel applications Discusses crucial industrial, technical and operational problems, as well as new performance improvement techniques and tools for better design and analysis Features clear explanations, numerous chapter-end problems and worked-out examples Refrigeration Systems and Applications, Third Edition is an indispensable working resource for researchers and practitioners in the areas of Refrigeration and Air Conditioning. It is also an ideal textbook for graduate and senior undergraduate students in mechanical, chemical, biochemical, industrial and food engineering disciplines.