The third volume of Arrow's Collected Papers concerns the basic concept of rationality as it applies to an economic decision maker. In particular, it addresses the problem of choice faced by consumers in a multicommodity world and presents specific models of choice useful in economic analysis. It also discusses choice models under uncertainty.
The third volume of Arrow's Collected Papers concerns the basic concept of rationality as it applies to an economic decision maker. In particular, it addresses the problem of choice faced by consumers in a multicommodity world and presents specific models of choice useful in economic analysis. It also discusses choice models under uncertainty.
A timeless classic of economic theory that remains fascinating and pertinent today, this is Frank Knight's famous explanation of why perfect competition cannot eliminate profits, the important differences between "risk" and "uncertainty," and the vital role of the entrepreneur in profitmaking. Based on Knight's PhD dissertation, this 1921 work, balancing theory with fact to come to stunning insights, is a distinct pleasure to read. FRANK H. KNIGHT (1885-1972) is considered by some the greatest American scholar of economics of the 20th century. An economics professor at the University of Chicago from 1927 until 1955, he was one of the founders of the Chicago school of economics, which influenced Milton Friedman and George Stigler.
This book describes the classical axiomatic theories of decision under uncertainty, as well as critiques thereof and alternative theories. It focuses on the meaning of probability, discussing some definitions and surveying their scope of applicability. The behavioral definition of subjective probability serves as a way to present the classical theories, culminating in Savage's theorem. The limitations of this result as a definition of probability lead to two directions - first, similar behavioral definitions of more general theories, such as non-additive probabilities and multiple priors, and second, cognitive derivations based on case-based techniques.
These authors draw on nearly 50 years of combined teaching and consulting experience to give readers a straightforward yet systematic approach for making estimates about the likelihood and consequences of future events -- and then using those assessments to arrive at sound decisions. The book's real-world cases, supplemented with expository text and spreadsheets, help readers master such techniques as decision trees and simulation, such concepts as probability, the value of information, and strategic gaming; and such applications as inventory stocking problems, bidding situations, and negotiating.
The social sciences study knowing subjects and their interactions. A "cog nitive turn", based on cognitive science, has the potential to enrich these sciences considerably. Cognitive economics belongs within this movement of the social sciences. It aims to take into account the cognitive processes of individuals in economic theory, both on the level of the agent and on the level of their dynamic interactions and the resulting collective phenomena. This is an ambitious research programme that aims to link two levels of com plexity: the level of cognitive phenomena as studied and tested by cognitive science, and the level of collective phenomena produced by the economic in teractions between agents. Such an objective requires cooperation, not only between economists and cognitive scientists but also with mathematicians, physicists and computer scientists, in order to renew, study and simulate models of dynamical systems involving economic agents and their cognitive mechanisms. The hard core of classical economics is the General Equilibrium Theory, based on the optimising rationality of the agent and on static concepts of equilibrium, following a point of view systemised in the framework of Game Theory. The agent is considered "rational" if everything takes place as if he was maximising a function representing his preferences, his utility function.
This handbook in two parts covers key topics of the theory of financial decision making. Some of the papers discuss real applications or case studies as well. There are a number of new papers that have never been published before especially in Part II.Part I is concerned with Decision Making Under Uncertainty. This includes subsections on Arbitrage, Utility Theory, Risk Aversion and Static Portfolio Theory, and Stochastic Dominance. Part II is concerned with Dynamic Modeling that is the transition for static decision making to multiperiod decision making. The analysis starts with Risk Measures and then discusses Dynamic Portfolio Theory, Tactical Asset Allocation and Asset-Liability Management Using Utility and Goal Based Consumption-Investment Decision Models.A comprehensive set of problems both computational and review and mind expanding with many unsolved problems are in an accompanying problems book. The handbook plus the book of problems form a very strong set of materials for PhD and Masters courses both as the main or as supplementary text in finance theory, financial decision making and portfolio theory. For researchers, it is a valuable resource being an up to date treatment of topics in the classic books on these topics by Johnathan Ingersoll in 1988, and William Ziemba and Raymond Vickson in 1975 (updated 2 nd edition published in 2006).