Impulsive Differential Inclusions

Impulsive Differential Inclusions

Author: John R. Graef

Publisher: Walter de Gruyter

Published: 2013-07-31

Total Pages: 412

ISBN-13: 3110295318

DOWNLOAD EBOOK

Differential equations with impulses arise as models of many evolving processes that are subject to abrupt changes, such as shocks, harvesting, and natural disasters. These phenomena involve short-term perturbations from continuous and smooth dynamics, whose duration is negligible in comparison with the duration of an entire evolution. In models involving such perturbations, it is natural to assume these perturbations act instantaneously or in the form of impulses. As a consequence, impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, and so forth. There are also many different studies in biology and medicine for which impulsive differential equations provide good models. During the last 10 years, the authors have been responsible for extensive contributions to the literature on impulsive differential inclusions via fixed point methods. This book is motivated by that research as the authors endeavor to bring under one cover much of those results along with results by other researchers either affecting or affected by the authors' work. The questions of existence and stability of solutions for different classes of initial value problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems. In addition, since differential equations can be viewed as special cases of differential inclusions, significant attention is also given to relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simpler beginnings as well.


Differential Equations with Impulse Effects

Differential Equations with Impulse Effects

Author: Nikolai A. Perestyuk

Publisher: Walter de Gruyter

Published: 2011-07-27

Total Pages: 325

ISBN-13: 3110218178

DOWNLOAD EBOOK

Significant interest in the investigation of systems with discontinuous trajectories is explained by the development of equipment in which significant role is played by impulsive control systems and impulsive computing systems. Impulsive systems are also encountered in numerous problems of natural sciences described by mathematical models with conditions reflecting the impulsive action of external forces with pulses whose duration can be neglected. Differential equations with set-valued right-hand side arise in the investigation of evolution processes in the case of measurement errors, inaccuracy or incompleteness of information, action of bounded perturbations, violation of unique solvability conditions, etc. Differential inclusions also allow one to describe the dynamics of controlled processes and are widely used in the theory of optimal control. This monograph is devoted to the investigation of impulsive differential equations with set-valued and discontinuous right-hand sides. It is intended for researchers, lecturers, postgraduate students, and students of higher schools specialized in the field of the theory of differential equations, the theory of optimal control, and their applications.


Solution Sets for Differential Equations and Inclusions

Solution Sets for Differential Equations and Inclusions

Author: Smaïl Djebali

Publisher: Walter de Gruyter

Published: 2012-12-06

Total Pages: 474

ISBN-13: 3110293560

DOWNLOAD EBOOK

This monograph gives a systematic presentation of classical and recent results obtained in the last couple of years. It comprehensively describes the methods concerning the topological structure of fixed point sets and solution sets for differential equations and inclusions. Many of the basic techniques and results recently developed about this theory are presented, as well as the literature that is disseminated and scattered in several papers of pioneering researchers who developed the functional analytic framework of this field over the past few decades. Several examples of applications relating to initial and boundary value problems are discussed in detail. The book is intended to advanced graduate researchers and instructors active in research areas with interests in topological properties of fixed point mappings and applications; it also aims to provide students with the necessary understanding of the subject with no deep background material needed. This monograph fills the vacuum in the literature regarding the topological structure of fixed point sets and its applications.


Impulsive Differential Equations

Impulsive Differential Equations

Author: N Perestyuk

Publisher: World Scientific

Published: 1995-08-31

Total Pages: 474

ISBN-13: 981449982X

DOWNLOAD EBOOK

Contents:General Description of Impulsive Differential SystemsLinear SystemsStability of SolutionsPeriodic and Almost Periodic Impulsive SystemsIntegral Sets of Impulsive SystemsOptimum Control in Impulsive SystemsAsymptotic Study of Oscillations in Impulsive SystemsA Periodic and Almost Periodic Impulsive SystemsBibliographySubject Index Readership: Researchers in nonlinear science. keywords:Differential Equations with Impulses;Linear Systems;Stability;Periodic and Quasi-Periodic Solutions;Integral Sets;Optimal Control “… lucid … the book … will benefit all who are interested in IDE…” Mathematics Abstracts


Fractional-Order Equations and Inclusions

Fractional-Order Equations and Inclusions

Author: Michal Fečkan

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2017-11-07

Total Pages: 506

ISBN-13: 3110521555

DOWNLOAD EBOOK

This book presents fractional difference, integral, differential, evolution equations and inclusions, and discusses existence and asymptotic behavior of their solutions. Controllability and relaxed control results are obtained. Combining rigorous deduction with abundant examples, it is of interest to nonlinear science researchers using fractional equations as a tool, and physicists, mechanics researchers and engineers studying relevant topics. Contents Fractional Difference Equations Fractional Integral Equations Fractional Differential Equations Fractional Evolution Equations: Continued Fractional Differential Inclusions


Functional Differential Equations with Infinite Delay

Functional Differential Equations with Infinite Delay

Author: Yoshiyuki Hino

Publisher: Springer

Published: 2006-11-14

Total Pages: 326

ISBN-13: 3540473882

DOWNLOAD EBOOK

In the theory of functional differential equations with infinite delay, there are several ways to choose the space of initial functions (phase space); and diverse (duplicated) theories arise, according to the choice of phase space. To unify the theories, an axiomatic approach has been taken since the 1960's. This book is intended as a guide for the axiomatic approach to the theory of equations with infinite delay and a culmination of the results obtained in this way. It can also be used as a textbook for a graduate course. The prerequisite knowledge is foundations of analysis including linear algebra and functional analysis. It is hoped that the book will prepare students for further study of this area, and that will serve as a ready reference to the researchers in applied analysis and engineering sciences.


Topological Methods for Differential Equations and Inclusions

Topological Methods for Differential Equations and Inclusions

Author: John R. Graef

Publisher: CRC Press

Published: 2018-09-25

Total Pages: 375

ISBN-13: 0429822626

DOWNLOAD EBOOK

Topological Methods for Differential Equations and Inclusions covers the important topics involving topological methods in the theory of systems of differential equations. The equivalence between a control system and the corresponding differential inclusion is the central idea used to prove existence theorems in optimal control theory. Since the dynamics of economic, social, and biological systems are multi-valued, differential inclusions serve as natural models in macro systems with hysteresis.


Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities

Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities

Author: Bashir Ahmad

Publisher: Springer

Published: 2017-03-16

Total Pages: 420

ISBN-13: 3319521411

DOWNLOAD EBOOK

This book focuses on the recent development of fractional differential equations, integro-differential equations, and inclusions and inequalities involving the Hadamard derivative and integral. Through a comprehensive study based in part on their recent research, the authors address the issues related to initial and boundary value problems involving Hadamard type differential equations and inclusions as well as their functional counterparts. The book covers fundamental concepts of multivalued analysis and introduces a new class of mixed initial value problems involving the Hadamard derivative and Riemann-Liouville fractional integrals. In later chapters, the authors discuss nonlinear Langevin equations as well as coupled systems of Langevin equations with fractional integral conditions. Focused and thorough, this book is a useful resource for readers and researchers interested in the area of fractional calculus.


Existence Theory for Nonlinear Ordinary Differential Equations

Existence Theory for Nonlinear Ordinary Differential Equations

Author: Donal O'Regan

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 207

ISBN-13: 9401715173

DOWNLOAD EBOOK

We begin our applications of fixed point methods with existence of solutions to certain first order initial initial value problems. This problem is relatively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y'. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de fined either locally or globally on I, according to the assumptions imposed on I. Notice that (1. 1) is a system of first order equations because I takes its values in Rn. In section 3. 2 we will first establish some basic existence theorems which guarantee that a solution to (1. 1) exists for t > 0 and near zero. Familiar examples show that the interval of existence can be arbi trarily short, depending on the initial value r and the nonlinear behaviour of I. As a result we will also examine in section 3. 2 the dependence of the interval of existence on I and r. We mention in passing that, in the results which follow, the interval I can be replaced by any bounded interval and the initial value can be specified at any point in I. The reasoning needed to cover this slightly more general situation requires minor modifications on the arguments given here.