Improving Efficiency and Stability of Perovskite Tandem Photovoltaics

Improving Efficiency and Stability of Perovskite Tandem Photovoltaics

Author: Caleb Clifford Boyd

Publisher:

Published: 2020

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Organic-inorganic metal halide perovskites are a class of semiconductor materials with excellent optoelectronic properties that hold promise for applications including photovoltaics, light-emitting diodes, and detectors. They are fabricated from low-cost, scalable solution processing or vapor deposition methods and have readily tunable optoelectronic properties through manipulation of chemical composition. This unique combination of materials properties has opened the door for low-cost tandem photovoltaics, in which a wide band gap perovskite solar cell is paired with a low band gap solar cell such as silicon, copper indium gallium diselenide, or low band gap perovskites, reducing thermalization losses that are intrinsic to single junction solar cells and enabling higher power conversion efficiencies. However, to enable commercialization of this new technology, the stability of metal halide perovskites must be improved. In this dissertation, I first describe the current understanding of degradation mechanisms for metal halide perovskite solar cells and methods to prevent them. I then discuss in detail metal oxide barrier layer design to prevent oxygen and moisture ingress and reactions between halogen species from the perovskite film and metal contacts and use these barrier layers to demonstrate efficient devices that have state-of-the-art operational and thermal stabilities. I then apply these learnings to highly efficient perovskite/silicon tandems, enabled by a stable device architecture and a novel, triple-halide (I, Br, Cl) perovskite with excellent photostability and optoelectronic properties enabled by the addition of chlorine into the lattice. I conclude with an in-depth study of interfacial reactions between the perovskite and nickel oxide, a highly desirable hole transport layer for efficient and stable perovskite tandem solar cells and demonstrate a method to prevent these reactions, improving device voltages and efficiencies.


Perovskite-Based Solar Cells

Perovskite-Based Solar Cells

Author: Saida Laalioui

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-02-21

Total Pages: 93

ISBN-13: 3110760614

DOWNLOAD EBOOK

"Perovskite-Based Solar Cells: From Fundamentals to Tandem Devices" gives fundamental understanding of perovskite solar cells from the chemical composition of each thin layer composing the different stacks to the whole device. Special attention has been given to the development of the materials forming the perovskite solar cell and their effect on the device performance, in addition to the recent progress of this emerging technology. Moreover, light has been shed on the perovskite elaboration techniques, in addition to the several techniques proposed to improve both the efficiency and the stability of perovskite solar cells. Furthermore, special emphasis was given to the three types of tandem solar cells and their recent advances starting from Perovskite/perovskite tandem solar cells to Perovskite/ CIGS tandem cells to perovskite/ heterojunction silicon tandem solar cells. The latter constitute a promising solution to improve photovoltaic solar cells performance.


Fabrication of Efficient Monolithic Perovskite Tandem Solar Cells with Improved Environmental Stability

Fabrication of Efficient Monolithic Perovskite Tandem Solar Cells with Improved Environmental Stability

Author: Kevin Alexander Bush

Publisher:

Published: 2018

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

In under an hour and a half, the sun illuminates the world with enough energy to meet our yearly global energy consumption. And yet, while the world's installed solar capacity tripled from 2012 to 2016, only 1.3% of global energy demands are met by solar. Increasing efficiency is one of the most promising paths to lowering system costs and drive further solar adoption in a heavily commoditized energy market. As the record single-junction efficiencies of perovskite solar cells now rival those of CIGS, CdTe, and the incumbent crystalline silicon, they are becoming increasingly attractive for use in tandem solar cells, due to their wide, tunable bandgap and solution processability. Tandems offers a pathway to surpassing fundamental efficiency limits on single-junction solar cells by extracting a portion of photo-generated carriers at a higher voltage and thus enabling the realization of the next generation of low cost photovoltaic cells. However, poor environmental stability presides as the Achilles heel of perovskites as they are susceptible to moisture ingress, methylammonium iodide egress, and corrosion of metal electrodes by reaction with halides in the perovskite. Additionally, while the bandgap of perovskites can be continuously tuned between 1.5 and 2.3eV by the substitution of bromide for iodide, open circuit voltages have not increased linearly with bandgap, largely negating the benefit of bandgap tuning. This dissertation will begin by focusing on the development of transparent and functional barrier layers to achieve efficient semi-transparent solar cells for use in tandems and simultaneously address the notoriously poor thermal and environmental stability of perovskites. I will show how the combination of a functional barrier layer and a transparent indium tin oxide electrode present a holistic solution to suppressing the three fastest degradation mechanisms in perovskite devices. This enables us to package our devices and pass several industry standard IEC solar cell stability tests. Next, I will present how compositional engineering can be employed to mitigate the effects of one of the primary causing of voltage loss -- halide segregation -- and achieve tandem relevant bandgaps of 1.68eV and 1.75eV. By fabricating our optimized 1.68eV bandgap perovskite with the window layer described previously on top of a heterojunction silicon solar cell, we achieve a record 25% efficient perovskite/silicon tandem. This combination of improved efficiency and stability represents an exciting step forward in achieving commercially viable perovskite tandem solar cells.


Silicon Heterojunction Solar Cells

Silicon Heterojunction Solar Cells

Author: W.R. Fahrner

Publisher: Trans Tech Publications Ltd

Published: 2006-08-15

Total Pages: 208

ISBN-13: 3038131024

DOWNLOAD EBOOK

The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.


Perovskite Photovoltaics and Optoelectronics

Perovskite Photovoltaics and Optoelectronics

Author: Tsutomu Miyasaka

Publisher: John Wiley & Sons

Published: 2022-03-21

Total Pages: 484

ISBN-13: 3527347488

DOWNLOAD EBOOK

Perovskite Photovoltaics and Optoelectronics Discover a one-of-a-kind treatment of perovskite photovoltaics In less than a decade, the photovoltaics of organic-inorganic halide perovskite materials has surpassed the efficiency of semiconductor compounds like CdTe and CIGS in solar cells. In Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications, distinguished engineer Dr. Tsutomu Miyasaka delivers a comprehensive exploration of foundational and advanced topics regarding halide perovskites. It summarizes the latest information and discussion in the field, from fundamental theory and materials to critical device applications. With contributions by top scientists working in the perovskite community, the accomplished editor has compiled a resource of central importance for researchers working on perovskite related materials and devices. This edited volume includes coverage of new materials and their commercial and market potential in areas like perovskite solar cells, perovskite light-emitting diodes (LEDs), and perovskite-based photodetectors. It also includes: A thorough introduction to halide perovskite materials, their synthesis, and dimension control Comprehensive explorations of the photovoltaics of halide perovskites and their historical background Practical discussions of solid-state photophysics and carrier transfer mechanisms in halide perovskite semiconductors In-depth examinations of multi-cation anion-based high efficiency perovskite solar cells Perfect for materials scientists, crystallization physicists, surface chemists, and solid-state physicists, Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications is also an indispensable resource for solid state chemists and device/electronics engineers.


Perovskite Photovoltaics

Perovskite Photovoltaics

Author: Aparna Thankappan

Publisher: Academic Press

Published: 2018-06-29

Total Pages: 521

ISBN-13: 0128129166

DOWNLOAD EBOOK

Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation examines the emergence of perovskite photovoltaics, associated challenges and opportunities, and how to achieve broader development. Consolidating developments in perovskite photovoltaics, including recent progress solar cells, this text also highlights advances and the research necessary for sustaining energy. Addressing different photovoltaics fields with tailored content for what makes perovskite solar cells suitable, and including commercialization examples of large-scale perovskite solar technology. The book also contains a detailed analysis of the implementation and economic viability of perovskite solar cells, highlighting what photovoltaic devices need to be generated by low cost, non-toxic, earth abundant materials using environmentally scalable processes. This book is a valuable resource engineers, scientists and researchers, and all those who wish to broaden their knowledge on flexible perovskite solar cells. Includes contributions by leading solar cell academics, industrialists, researchers and institutions across the globe Addresses different photovoltaics fields with tailored content for what makes perovskite solar cells different Provides commercialization examples of large-scale perovskite solar technology, giving users detailed analysis on the implementation, technical challenges and economic viability of perovskite solar cells


Hybrid Perovskite Solar Cells

Hybrid Perovskite Solar Cells

Author: Hiroyuki Fujiwara

Publisher: John Wiley & Sons

Published: 2022-01-10

Total Pages: 612

ISBN-13: 3527347291

DOWNLOAD EBOOK

Unparalleled coverage of the most vibrant research field in photovoltaics! Hybrid perovskites, revolutionary game-changing semiconductor materials, have every favorable optoelectronic characteristic necessary for realizing high efficiency solar cells. The remarkable features of hybrid perovskite photovoltaics, such as superior material properties, easy material fabrication by solution-based processing, large-area device fabrication by an inkjet technology, and simple solar cell structures, have brought enormous attentions, leading to a rapid development of the solar cell technology at a pace never before seen in solar cell history. Hybrid Perovskite Solar Cells: Characteristics and Operation covers extensive topics of hybrid perovskite solar cells, providing easy-to-read descriptions for the fundamental characteristics of unique hybrid perovskite materials (Part I) as well as the principles and applications of hybrid perovskite solar cells (Part II). Both basic and advanced concepts of hybrid perovskite devices are treated thoroughly in this book; in particular, explanatory descriptions for general physical and chemical aspects of hybrid perovskite photovoltaics are included to provide fundamental understanding. This comprehensive book is highly suitable for graduate school students and researchers who are not familiar with hybrid perovskite materials and devices, allowing the accumulation of the accurate knowledge from the basic to the advanced levels.


Perovskite Solar Cells

Perovskite Solar Cells

Author: Shahzada Ahmad

Publisher: John Wiley & Sons

Published: 2022-03-14

Total Pages: 580

ISBN-13: 3527347151

DOWNLOAD EBOOK

Presents a thorough overview of perovskite research, written by leaders in the field of photovoltaics The use of perovskite-structured materials to produce high-efficiency solar cells is a subject of growing interest for academic researchers and industry professionals alike. Due to their excellent light absorption, longevity, and charge-carrier properties, perovskite solar cells show great promise as a low-cost, industry-scalable alternative to conventional photovoltaic cells. Perovskite Solar Cells: Materials, Processes, and Devices provides an up-to-date overview of the current state of perovskite solar cell research. Addressing the key areas in the rapidly growing field, this comprehensive volume covers novel materials, advanced theory, modelling and simulation, device physics, new processes, and the critical issue of solar cell stability. Contributions by an international panel of researchers highlight both the opportunities and challenges related to perovskite solar cells while offering detailed insights on topics such as the photon recycling processes, interfacial properties, and charge transfer principles of perovskite-based devices. Examines new compositions, hole and electron transport materials, lead-free materials, and 2D and 3D materials Covers interface modelling techniques, methods for modelling in two and three dimensions, and developments beyond Shockley-Queisser Theory Discusses new fabrication processes such as slot-die coating, roll processing, and vacuum sublimation Describes the device physics of perovskite solar cells, including recombination kinetics and optical absorption Explores innovative approaches to increase the light conversion efficiency of photovoltaic cells Perovskite Solar Cells: Materials, Processes, and Devices is essential reading for all those in the photovoltaic community, including materials scientists, surface physicists, surface chemists, solid state physicists, solid state chemists, and electrical engineers.


Handbook of Transparent Conductors

Handbook of Transparent Conductors

Author: David S. Ginley

Publisher: Springer Science & Business Media

Published: 2010-09-11

Total Pages: 537

ISBN-13: 1441916385

DOWNLOAD EBOOK

Transparent conducting materials are key elements in a wide variety of current technologies including flat panel displays, photovoltaics, organic, low-e windows and electrochromics. The needs for new and improved materials is pressing, because the existing materials do not have the performance levels to meet the ever- increasing demand, and because some of the current materials used may not be viable in the future. In addition, the field of transparent conductors has gone through dramatic changes in the last 5-7 years with new materials being identified, new applications and new people in the field. “Handbook of Transparent Conductors” presents transparent conductors in a historical perspective, provides current applications as well as insights into the future of the devices. It is a comprehensive reference, and represents the most current resource on the subject.


Fundamentals of Solar Cell Design

Fundamentals of Solar Cell Design

Author: Inamuddin

Publisher: John Wiley & Sons

Published: 2021-08-24

Total Pages: 578

ISBN-13: 1119724708

DOWNLOAD EBOOK

Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.