Interpretable Machine Learning

Interpretable Machine Learning

Author: Christoph Molnar

Publisher: Lulu.com

Published: 2020

Total Pages: 320

ISBN-13: 0244768528

DOWNLOAD EBOOK

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.


Fuzzy Approaches for Soft Computing and Approximate Reasoning: Theories and Applications

Fuzzy Approaches for Soft Computing and Approximate Reasoning: Theories and Applications

Author: Marie-Jeanne Lesot

Publisher: Springer Nature

Published: 2020-10-26

Total Pages: 305

ISBN-13: 3030543412

DOWNLOAD EBOOK

This book gathers cutting-edge papers in the area of Computational Intelligence, presented by specialists, and covering all major trends in the research community in order to provide readers with a rich primer. It presents an overview of various soft computing topics and approximate reasoning-based approaches, both from theoretical and applied perspectives. Numerous topics are covered: fundamentals aspects of fuzzy sets theory, reasoning approaches (interpolative, analogical, similarity-based), decision and optimization theory, fuzzy databases, soft machine learning, summarization, interpretability and XAI. Moreover, several application-based papers are included, e.g. on image processing, semantic web and intelligent tutoring systems. This book is dedicated to Bernadette Bouchon-Meunier in honor of her achievements in Computational Intelligence, which, throughout her career, have included profuse and diverse collaborations, both thematically and geographically.


Accuracy Improvements in Linguistic Fuzzy Modeling

Accuracy Improvements in Linguistic Fuzzy Modeling

Author: Jorge Casillas

Publisher: Springer

Published: 2013-11-11

Total Pages: 392

ISBN-13: 3540370587

DOWNLOAD EBOOK

Fuzzy modeling usually comes with two contradictory requirements: interpretability, which is the capability to express the real system behavior in a comprehensible way, and accuracy, which is the capability to faithfully represent the real system. In this framework, one of the most important areas is linguistic fuzzy modeling, where the legibility of the obtained model is the main objective. This task is usually developed by means of linguistic (Mamdani) fuzzy rule-based systems. An active research area is oriented towards the use of new techniques and structures to extend the classical, rigid linguistic fuzzy modeling with the main aim of increasing its precision degree. Traditionally, this accuracy improvement has been carried out without considering the corresponding interpretability loss. Currently, new trends have been proposed trying to preserve the linguistic fuzzy model description power during the optimization process. Written by leading experts in the field, this volume collects some representative researcher that pursue this approach.


Springer Handbook of Computational Intelligence

Springer Handbook of Computational Intelligence

Author: Janusz Kacprzyk

Publisher: Springer

Published: 2015-05-28

Total Pages: 1637

ISBN-13: 3662435055

DOWNLOAD EBOOK

The Springer Handbook for Computational Intelligence is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of computational intelligence. This comprehensive handbook makes readers familiar with a broad spectrum of approaches to solve various problems in science and technology. Possible approaches include, for example, those being inspired by biology, living organisms and animate systems. Content is organized in seven parts: foundations; fuzzy logic; rough sets; evolutionary computation; neural networks; swarm intelligence and hybrid computational intelligence systems. Each Part is supervised by its own Part Editor(s) so that high-quality content as well as completeness are assured.


Ensemble Methods in Data Mining

Ensemble Methods in Data Mining

Author: Giovanni Seni

Publisher: Morgan & Claypool Publishers

Published: 2010

Total Pages: 127

ISBN-13: 1608452840

DOWNLOAD EBOOK

"Ensemble methods have been called the most influential development in Data Mining and Machine Learning in the past decade. They combine multiple models into one usually more accurate than the best of its components. Ensembles can provide a critical boost to industrial challenges -- from investment timing to drug discovery, and fraud detection to recommendation systems -- where predictive accuracy is more vital than model interpretability. Ensembles are useful with all modeling algorithms, but this book focuses on decision trees to explain them most clearly. After describing trees and their strengths and weaknesses, the authors provide an overview of regularization -- today understood to be a key reason for the superior performance of modern ensembling algorithms. The book continues with a clear description of two recent developments: Importance Sampling (IS) and Rule Ensembles (RE). IS reveals classic ensemble methods -- bagging, random forests, and boosting -- to be special cases of a single algorithm, thereby showing how to improve their accuracy and speed. REs are linear rule models derived from decision tree ensembles. They are the most interpretable version of ensembles, which is essential to applications such as credit scoring and fault diagnosis. Lastly, the authors explain the paradox of how ensembles achieve greater accuracy on new data despite their (apparently much greater) complexity."--Publisher's website.


Advances in Intelligent Data Analysis

Advances in Intelligent Data Analysis

Author: David J Hand

Publisher: Springer

Published: 2003-05-21

Total Pages: 529

ISBN-13: 3540484124

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Third International Symposium on Intelligent Data Analysis, IDA-99 held in Amsterdam, The Netherlands in August 1999. The 21 revised full papers and 23 posters presented in the book were carefully reviewed and selected from a total of more than 100 submissions. The papers address all current aspects of intelligent data analysis; they are organized in sections on learning, visualization, classification and clustering, integration, applications and media mining.


Design of Interpretable Fuzzy Systems

Design of Interpretable Fuzzy Systems

Author: Krzysztof Cpałka

Publisher: Springer

Published: 2017-01-31

Total Pages: 203

ISBN-13: 3319528815

DOWNLOAD EBOOK

This book shows that the term “interpretability” goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required accuracy using a less complex rule base. The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms. It also demonstrates how to eliminate various system components, such as inputs, rules and fuzzy sets, whose reduction does not adversely affect system accuracy. It illustrates the performance of the developed algorithms and methods with commonly used benchmarks. The book provides valuable tools for possible applications in many fields including expert systems, automatic control and robotics.


Data Scientists at Work

Data Scientists at Work

Author: Sebastian Gutierrez

Publisher: Apress

Published: 2014-12-12

Total Pages: 348

ISBN-13: 143026599X

DOWNLOAD EBOOK

Data Scientists at Work is a collection of interviews with sixteen of the world's most influential and innovative data scientists from across the spectrum of this hot new profession. "Data scientist is the sexiest job in the 21st century," according to the Harvard Business Review. By 2018, the United States will experience a shortage of 190,000 skilled data scientists, according to a McKinsey report. Through incisive in-depth interviews, this book mines the what, how, and why of the practice of data science from the stories, ideas, shop talk, and forecasts of its preeminent practitioners across diverse industries: social network (Yann LeCun, Facebook); professional network (Daniel Tunkelang, LinkedIn); venture capital (Roger Ehrenberg, IA Ventures); enterprise cloud computing and neuroscience (Eric Jonas, formerly Salesforce.com); newspaper and media (Chris Wiggins, The New York Times); streaming television (Caitlin Smallwood, Netflix); music forecast (Victor Hu, Next Big Sound); strategic intelligence (Amy Heineike, Quid); environmental big data (André Karpištšenko, Planet OS); geospatial marketing intelligence (Jonathan Lenaghan, PlaceIQ); advertising (Claudia Perlich, Dstillery); fashion e-commerce (Anna Smith, Rent the Runway); specialty retail (Erin Shellman, Nordstrom); email marketing (John Foreman, MailChimp); predictive sales intelligence (Kira Radinsky, SalesPredict); and humanitarian nonprofit (Jake Porway, DataKind). The book features a stimulating foreword by Google's Director of Research, Peter Norvig. Each of these data scientists shares how he or she tailors the torrent-taming techniques of big data, data visualization, search, and statistics to specific jobs by dint of ingenuity, imagination, patience, and passion. Data Scientists at Work parts the curtain on the interviewees’ earliest data projects, how they became data scientists, their discoveries and surprises in working with data, their thoughts on the past, present, and future of the profession, their experiences of team collaboration within their organizations, and the insights they have gained as they get their hands dirty refining mountains of raw data into objects of commercial, scientific, and educational value for their organizations and clients.


Research Handbook on Artificial Intelligence and Decision Making in Organizations

Research Handbook on Artificial Intelligence and Decision Making in Organizations

Author: Ioanna Constantiou

Publisher: Edward Elgar Publishing

Published: 2024-03-14

Total Pages: 393

ISBN-13: 180392621X

DOWNLOAD EBOOK

Featuring state-of-the-art research from leading academics in technology and organization studies, this timely Research Handbook provides a comprehensive overview of how AI becomes embedded in decision making in organizations, from the initial considerations when implementing AI to the use of such solutions in strategic decision making.


Interpretability Issues in Fuzzy Modeling

Interpretability Issues in Fuzzy Modeling

Author: Jorge Casillas

Publisher: Springer

Published: 2013-06-05

Total Pages: 646

ISBN-13: 3540370579

DOWNLOAD EBOOK

Fuzzy modeling has become one of the most productive and successful results of fuzzy logic. Among others, it has been applied to knowledge discovery, automatic classification, long-term prediction, or medical and engineering analysis. The research developed in the topic during the last two decades has been mainly focused on exploiting the fuzzy model flexibility to obtain the highest accuracy. This approach usually sets aside the interpretability of the obtained models. However, we should remember the initial philosophy of fuzzy sets theory directed to serve the bridge between the human understanding and the machine processing. In this challenge, the ability of fuzzy models to express the behavior of the real system in a comprehensible manner acquires a great importance. This book collects the works of a group of experts in the field that advocate the interpretability improvements as a mechanism to obtain well balanced fuzzy models.