Polymer-Improved Oil Recovery

Polymer-Improved Oil Recovery

Author: K.S. Sorbie

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 371

ISBN-13: 9401130442

DOWNLOAD EBOOK

The importance of oil in the world economy cannot be overstated, and methods for recovering oil will be the subject of much scientific and engineering research for many years to come. Even after the application of primary depletion and secondary recovery processes (usually waterflooding), much oil usually remains in a reservoir, and indeed in some heterogeneous reservoir systems as much as 70% of the original oil may remain. Thus, there is an enormous incentive for the development of improved or enhanced methods of oil recovery, aimed at recovering some portion of this remainil)g oil. The techniques used range from 'improved' secondary flooding methods (including polymer and certain gas injection processes) through to 'enhanced' or 'tertiary' methods such as chemical (surfactant, caustic, foam), gas miscible (carbon dioxide, gas reinjection) and thermal (steam soak and drive, in-situ combustion). The distinction between the classification ofthe methods usually refers to the target oil that the process seeks to recover. That is, in 'improved' recovery we are usually aiming to increase the oil sweep efficiency, whereas in 'tertiary' recovery we aim to mobilise and recover residual or capillary trapped oil. There are a few books and collections of articles which give general overviews of improved and enhanced oil recovery methods. However, for each recovery method, there is such a wide range of interconnected issues concerning the chemistry, physics and fluid mechanics of flow in porous media, that rarely are these adequately reviewed.


Enhanced Oil Recovery

Enhanced Oil Recovery

Author: Vladimir Alvarado

Publisher: Gulf Professional Publishing

Published: 2010

Total Pages: 192

ISBN-13: 9781856178556

DOWNLOAD EBOOK

Enhanced-Oil Recovery (EOR) evaluations focused on asset acquisition or rejuvenation involve a combination of complex decisions, using different data sources. EOR projects have been traditionally associated with high CAPEX and OPEX, as well as high financial risk, which tend to limit the number of EOR projects launched. In this book, the authors propose workflows for EOR evaluations that account for different volumes and quality of information. This flexible workflow has been successfully applied to oil property evaluations and EOR feasibility studies in many oil reservoirs. The methodology associated with the workflow relies on traditional (look-up tables, XY correlations, etc.) and more advanced (data mining for analog reservoir search and geology indicators) screening methods, emphasizing identification of analogues to support decision making. The screening phase is combined with analytical or simplified numerical simulations to estimate full-field performance by using reservoir data-driven segmentation procedures. Case Studies form Asia, Canada, Mexico, South America and the United States Assets evaluated include reservoir types ranging from oil sands to condensate reservoirs. Different stages of development and information availability are discussed


Fundamentals of Enhanced Oil Recovery Methods for Unconventional Oil Reservoirs

Fundamentals of Enhanced Oil Recovery Methods for Unconventional Oil Reservoirs

Author: Dheiaa Alfarge

Publisher: Elsevier

Published: 2020-09-09

Total Pages: 288

ISBN-13: 0128183446

DOWNLOAD EBOOK

Fundamentals of Enhanced Oil Recovery Methods for Unconventional Oil Reservoirs, Volume 67 provides important guidance on which EOR methods work in shale and tight oil reservoirs. This book helps readers learn the main fluid and rock properties of shale and tight reservoirs—which are the main target for EOR techniques—and understand the physical and chemical mechanisms for the injected EOR fluids to enhance oil recovery in shale and tight oil reservoirs. The book explains the effects of complex hydraulic fractures and natural fractures on the performance of each EOR technique. The book describes the parameters affecting obtained oil recovery by injecting different EOR methods in both the microscopic and macroscopic levels of ULR. This book also provides proxy models to associate the functionality of the improved oil recovery by injecting different EOR methods with different operating parameters, rock, and fluid properties. The book provides profesasionals working in the petroleum industry the know-how to conduct a successful project for different EOR methods in shale plays, while it also helps academics and students in understanding the basics and principles that make the performance of EOR methods so different in conventional reservoirs and unconventional formations. - Provides a general workflow for how to conduct a successful project for different EOR methods in these shale plays - Provides general guidelines for how to select the best EOR method according to the reservoir characteristics and wells stimulation criteria - Explains the basics and principles that make the performance of EOR methods so different in conventional reservoirs versus unconventional formations


Primer on Enhanced Oil Recovery

Primer on Enhanced Oil Recovery

Author: Vladimir Vishnyakov

Publisher: Gulf Professional Publishing

Published: 2019-11-06

Total Pages: 0

ISBN-13: 9780128176320

DOWNLOAD EBOOK

Primer on Enhanced Oil Recovery gives the oil and gas market the introductory information it needs to cover the physical and chemical properties of hydrocarbon reservoir fluids and rock, drilling operations, rock-fluid interactions, recovery methods, and the economy of enhanced oil recovery projects. Beginning with introductory materials on basic physics and oil-rock interaction, the book then progresses into well-known types of EOR, such as gas injection and microbial EOR. Other sections cover hybrid EOR, smart water/low salinity and solar EOR. Worldwide case study examples give engineers the go-to starting point they need to understand the fundamentals of EOR techniques and data.


Modern Chemical Enhanced Oil Recovery

Modern Chemical Enhanced Oil Recovery

Author: James J.Sheng

Publisher: Gulf Professional Publishing

Published: 2010-11-25

Total Pages: 648

ISBN-13: 0080961630

DOWNLOAD EBOOK

Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary recovery, the natural pressure of the reservoir or gravity drive oil into the wellbore, combined with artificial lift techniques (such as pumps) which bring the oil to the surface. But only about 10 percent of a reservoir's original oil in place is typically produced during primary recovery. Secondary recovery techniques to the field's productive life generally by injecting water or gas to displace oil and drive it to a production wellbore, resulting in the recovery of 20 to 40 percent of the original oil in place. In the past two decades, major oil companies and research organizations have conducted extensive theoretical and laboratory EOR (enhanced oil recovery) researches, to include validating pilot and field trials relevant to much needed domestic commercial application, while western countries had terminated such endeavours almost completely due to low oil prices. In recent years, oil demand has soared and now these operations have become more desirable. This book is about the recent developments in the area as well as the technology for enhancing oil recovery. The book provides important case studies related to over one hundred EOR pilot and field applications in a variety of oil fields. These case studies focus on practical problems, underlying theoretical and modelling methods, operational parameters (e.g., injected chemical concentration, slug sizes, flooding schemes and well spacing), solutions and sensitivity studies, and performance optimization strategies. The book strikes an ideal balance between theory and practice, and would be invaluable to academicians and oil company practitioners alike. - Updated chemical EOR fundamentals providing clear picture of fundamental concepts - Practical cases with problems and solutions providing practical analogues and experiences - Actual data regarding ranges of operation parameters providing initial design parameters - Step-by-step calculation examples providing practical engineers with convenient procedures


Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs

Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs

Author: Alireza Bahadori

Publisher: Gulf Professional Publishing

Published: 2018-08-25

Total Pages: 0

ISBN-13: 9780128130278

DOWNLOAD EBOOK

Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs delivers the proper foundation on all types of currently utilized and upcoming enhanced oil recovery, including methods used in emerging unconventional reservoirs. Going beyond traditional secondary methods, this reference includes advanced water-based EOR methods which are becoming more popular due to CO2 injection methods used in EOR and methods specific to target shale oil and gas activity. Rounding out with a chapter devoted to optimizing the application and economy of EOR methods, the book brings reservoir and petroleum engineers up-to-speed on the latest studies to apply. Enhanced oil recovery continues to grow in technology, and with ongoing unconventional reservoir activity underway, enhanced oil recovery methods of many kinds will continue to gain in studies and scientific advancements. Reservoir engineers currently have multiple outlets to gain knowledge and are in need of one product go-to reference.


Formation Damage during Improved Oil Recovery

Formation Damage during Improved Oil Recovery

Author: Bin Yuan

Publisher: Gulf Professional Publishing

Published: 2018-06-02

Total Pages: 0

ISBN-13: 9780128137826

DOWNLOAD EBOOK

Formation Damage during Improved Oil Recovery: Fundamentals and Applications bridges the gap between theoretical knowledge and field practice by presenting information on formation damage issues that arise during enhanced oil recovery. Multi-contributed technical chapters include sections on modeling and simulation, lab experiments, field case studies, and newly proposed technologies and methods that are related to formation damage during secondary and tertiary recovery processes in both conventional and unconventional reservoirs. Focusing on both the fundamental theories related to EOR and formation damage, this reference helps engineers formulate integrated and systematic designs for applying EOR processes while also considering formation damage issues.


Chemical Enhanced Oil Recovery

Chemical Enhanced Oil Recovery

Author: Patrizio Raffa

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-07-22

Total Pages: 186

ISBN-13: 3110640252

DOWNLOAD EBOOK

This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).