The response of civil engineering works to earthquakes is the only real and conclusive proof of their adequacy or otherwise. However, earthquakes as natural geological phenomena are few and far-between, which is fortunate from a human point of view. Therefore, drawing important lessons from each and every earthquake is vital for improving the understanding of their effects and consequently for mitigating the effects of future earthquakes. It is in this context that this volume has been written, where a number of distinguished and internationally renowned earthquake engineers make contributions largely based on lessons from recent earthquakes. In particular, studies of the Kobe earthquake of 1995 and the more recent devastating earthquakes in Turkey and Greece (August and September 1999, respectively) are included. Through assimilation of the lessons learnt and dissemination of this information, it is hoped that, future earthquakes will not exact such a heavy toll.
An earthquake is a natural disaster that causes damage world-wide. Not only earthquakes of high magnitude, but also those of small magnitude that strike unprepared regions can cause economic and social consequences, and many casualties. Unlike other natural disasters, the exact time of an earthquake cannot be estimated; scientists can only predict the timeline and magnitude based on the history of earthquakes in a region. Even though current technology cannot predict the precise time, location or magnitude, public awareness about the estimations allows both individuals and government to be ready for their devastating effects. This book begins by discussing how public awareness about the effects of earthquakes and how to prepare for a possible earthquake which can potentially save lives. The book then continues with topics that include seismic PRA; seismic safety assessments of existing buildings; psychiatric reactions of individuals to earthquakes; possible relation between an intense earthquake and the voltage signal generated by atmospheric ionic currents and/or sudden change of the electric field in the air; and others.
Improved Seismic Monitoringâ€"Improved Decision-Making, describes and assesses the varied economic benefits potentially derived from modernizing and expanding seismic monitoring activities in the United States. These benefits include more effective loss avoidance regulations and strategies, improved understanding of earthquake processes, better engineering design, more effective hazard mitigation strategies, and improved emergency response and recovery. The economic principles that must be applied to determine potential benefits are reviewed and the report concludes that although there is insufficient information available at present to fully quantify all the potential benefits, the annual dollar costs for improved seismic monitoring are in the tens of millions and the potential annual dollar benefits are in the hundreds of millions.
The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.
A unique interdisciplinary approach to disaster risk research, including global hazards and case-studies, for researchers, graduate students and professionals.
This is a discount Black and white version. Some images may be unclear, please see BCCampus website for the digital version.This book was born out of a 2014 meeting of earth science educators representing most of the universities and colleges in British Columbia, and nurtured by a widely shared frustration that many students are not thriving in courses because textbooks have become too expensive for them to buy. But the real inspiration comes from a fascination for the spectacular geology of western Canada and the many decades that the author spent exploring this region along with colleagues, students, family, and friends. My goal has been to provide an accessible and comprehensive guide to the important topics of geology, richly illustrated with examples from western Canada. Although this text is intended to complement a typical first-year course in physical geology, its contents could be applied to numerous other related courses.
Encompassing theory and field experience, this book covers all the main subject areas in earthquake risk reduction, ranging from geology, seismology, structural and soil dynamics to hazard and risk assessment, risk management and planning, engineering and the architectural design of new structures and equipment. Earthquake Risk Reduction outlines individual national weaknesses that contribute to earthquake risk to people and property; calculates the seismic response of soils and structures, using the structural continuum 'Subsoil - Substructure - Superstructure - Non-structure'; evaluates the effectiveness of given designs and construction procedures for reducing casualties and financial losses; provides guidance on the key issue of choice of structural form; presents earthquake resistant designs methods for the four main structural materials - steel, concrete, reinforced masonry and timber - as well as for services equipment, plant and non-structural architectural components; contains a chapter devoted to problems involved in improving (retrofitting) the existing built environment. Compiled from the author's extensive professional experience in earthquake engineering, this key text provides an excellent treatment of the complex multidisciplinary process of earthquake risk reduction. This book will prove an invaluable reference and guiding tool to practicing civil and structural engineers and architects, researchers and postgraduate students in seismology, local governments and risk management officials.
Earthquakes represent a major risk to buildings, bridges and other civil infrastructure systems, causing catastrophic loss to modern society. Handbook of seismic risk analysis and management of civil infrastructure systems reviews the state of the art in the seismic risk analysis and management of civil infrastructure systems.Part one reviews research in the quantification of uncertainties in ground motion and seismic hazard assessment. Part twi discusses methodologies in seismic risk analysis and management, whilst parts three and four cover the application of seismic risk assessment to buildings, bridges, pipelines and other civil infrastructure systems. Part five also discusses methods for quantifying dependency between different infrastructure systems. The final part of the book considers ways of assessing financial and other losses from earthquake damage as well as setting insurance rates.Handbook of seismic risk analysis and management of civil infrastructure systems is an invaluable guide for professionals requiring understanding of the impact of earthquakes on buildings and lifelines, and the seismic risk assessment and management of buildings, bridges and transportation. It also provides a comprehensive overview of seismic risk analysis for researchers and engineers within these fields. - This important handbook reviews the wealth of recent research in the area of seismic hazard analysis in modern earthquake design code provisions and practices - Examines research into the analysis of ground motion and seismic hazard assessment, seismic risk hazard methodologies - Addresses the assessment of seismic risks to buildings, bridges, water supply systems and other aspects of civil infrastructure
Author: National Research Council (U.S.). Committee to Develop a Long-Term Research Agenda for the Network for Earthquake Engineering Simulation (NEES)
The Network for Earthquake Engineering Simulation (NEES), administered by the National Science Foundation (NSF), is scheduled to become operational in 2004. These network sites will perform a range of experiments to test and validate complex computer models being developed to simulate the behavior of structures subjected to earthquakes. To assist in this effort, the NSF requested the National Research Council(NRC) to frame the major questions to be addressed by and to develop a long-term research agenda for NEES. Preventing Earthquake Disasters presents an overview of the grand challenge including six critical research problems making up that challenge. The report also provides an assessment of earthquake engineering research issues and the role of information technology in that research effort, and a research plan for NEES.