The Devil's Fruit describes the facets of the strawberry industry as a harm industry, and explores author Dvera Saxton’s activist ethnographic work with farmworkers in response to health and environmental injustices. She argues that dealing with devilish—as in deadly, depressing, disabling, and toxic—problems requires intersecting ecosocial, emotional, ethnographic, and activist labors. Through her work as an activist medical anthropologist, she found the caring labors of engaged ethnography take on many forms that go in many different directions. Through chapters that examine farmworkers’ embodiment of toxic pesticides and social and workplace relationships, Saxton critically and reflexively describes and analyzes the ways that engaged and activist ethnographic methods, frameworks, and ethics aligned and conflicted, and in various ways helped support still ongoing struggles for farmworker health and environmental justice in California. These are problems shared by other agricultural communities in the U.S. and throughout the world.
In this book we bring together the most up-to-date information on developments, both basic and applied, that already have or are expected to impact the field of ornamental breeding. These include classical and molecular techniques, traditional and high-throughput approaches and future trends. Since not only professional scientists, but also thousands of future scientists/students as well as amateur breeders around the world contribute heavily to the field of ornamental breeding, an introductory section dealing with the basics of molecular and classical genetics and the evolution of floral diversity is included. This should enable the reader to bridge the gap between traditional and molecular genetics. Classical approaches to the creation/selection of genetic variability, including mutation and tissue culture-aided breeding, are presented. Processes affecting ornamental and agronomic traits at the molecular level are delineated, along with an in-depth analysis of developments in the protection of intellectual property rights. The thoughts and strategies of molecular and classical geneticists, which are not always complementary or even compatible, are presented side by side in this book, and will serve to spark the imaginations of breeders as well as students entering the exciting world of state-of-the-art ornamentals.
Look to Brazil for safe, stable investments As the future of the American economy seems to get bleaker by the day, it is tempting to look abroad for business opportunities. Europe and Asia don't provide much hope, but what about somewhere that's both closer to home and sunny year-round? In Brazil is the New America: How Brazil Offers Upward Mobility in a Collapsing World, James D. Davidson shows that the current financial situation in Brazil is a haven for those looking to make money in a world in turmoil. With a population just 62 percent the size of that of the US, Brazil has added 15,023,633 jobs over the past eight years, while the US has lost millions. In a world burdened by bankrupt governments and aging populations, Brazil is solvent, with two people of working age for every dependent. In a world of "Peak Oil" Brazil is energy independent, with 70 billion barrels of oil, 60% of the world's unused arable land, and 15% of its fresh water. Comparatively non-leveraged—and with significant room for growth and expansion, as well as vast natural resources, Brazil is a haven of opportunity. Written by James D. Davidson, the editor/publisher of Strategic Investment and cofounder of Agora and the media outlet, Newsmax, Brazil is the New America details: How the original "America" now embodies the brightest hope for realizing the American Dream while the "Old America" is headed for a dramatic decline in the standard of living Investment opportunities not only for those willing to relocate, but anyone who can consider investing there The cost structure of employment in Brazil versus the United States Brazil has already learned its lesson about the dangers of inflation. Cash has taken the place of credit, and high interest rate returns are now the norm.
This two-volume set highlights the various innovative and emerging techniques and molecular applications that are currently being used in plant abiotic stress physiology. Volume 1: Responses and Adaptations focuses on the responses and adaptations of plants to stress factors at the cellular and molecular levels and offers a variety of advanced management strategies and technologies. Volume 2: Molecular Advancements introduces a range of state-of-the-art molecular advances for the mitigation of abiotic stress in plants. With contributions from specialists in the field, Volume 1 first discusses the physiology and defense mechanisms of plants and the various kinds of stress, such as from challenging environments, climate change, and nutritional deficiencies. It goes on to discuss trailblazing management techniques that include genetics approaches for improving abiotic stress tolerance in crop plants along with CRISPR/CAS-mediated genome editing technologies. Volume 2 discusses how plants have developed diverse physiological and molecular adjustments to safeguard themselves under challenging conditions and how emerging new technologies can utilize these plant adaptations to enhance plant resistance. These include using plant-environment interactions to develop crop species that are resilient to climate change, applying genomics and phenomics approaches from the study of abiotic stress tolerance and more. Agriculture today faces countless challenges to meet the rising need for sustainable food supplies and guarantees of high-quality nourishment for a quickly increasing population. To ensure sufficient food production, it is necessary to address the difficult environmental circumstances that are causing cellular oxidative stress in plants due to abiotic factors, which play a defining role in shaping yield of crop plants. These two volumes help to meet these challenges by providing a rich source of information on plant abiotic stress physiology and effective management techniques.
The prospect of future climate change has stimulated research into the physiological responses of plants to stress. Water is a key factor controlling the distribution and abundance of plants. This book brings together contributions from a range of experts who have worked on the cavitation of water in the transport system.
The knowledge of plant responses to various abiotic stresses is crucial to understand their underlying mechanisms as well as the methods to develop new varieties of crops, which are better suited to the environment they are grown in. Environmental Stress Physiology of Plants and Crop Productivity provides readers a timely update on the knowledge about plant responses to a variety of stresses such as salinity, temperature, drought, oxidative stress and mineral deficiencies. Chapters focus on biochemical mechanisms identified in plants crucial to adapting to specific abiotic stressors along with the methods of improving plant tolerance. The book also sheds light on plant secondary metabolites such as phenylpropanoids and plant growth regulators in ameliorating the stressful conditions in plants. Additional chapters present an overview of applications of genomics, proteomics and metabolomics (including CRISPR/CAS techniques) to develop abiotic stress tolerant crops. The editors have also provided detailed references for extended reading to support the information in the book. Environmental Stress Physiology of Plants and Crop Productivity is an informative reference for scholars and researchers working in the field of botany, agriculture, crop science and physiology, soil science, and environmental sciences.
Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: - Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. - New discussion of conceptual plant design, flowsheet development and revamp design - Significantly increased coverage of capital cost estimation, process costing and economics - New chapters on equipment selection, reactor design and solids handling processes - New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography - Increased coverage of batch processing, food, pharmaceutical and biological processes - All equipment chapters in Part II revised and updated with current information - Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards - Additional worked examples and homework problems - The most complete and up to date coverage of equipment selection - 108 realistic commercial design projects from diverse industries - A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website - Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors
Plant-Microbe Interaction - Recent Advances in Molecular and Biochemical Approaches: Agricultural Aspects of Microbiome Leading to Plant Defence, Volume Two continues the work of Volume One, covering the role of these plant microbes and their interaction between plants and microbes. These beneficial microbes, such as bacteria and fungi are also known as plant growth-promoting rhizobacteria (PGPR) through a biochemical reaction that may improve induced systemic resistance in the plant host via indirectly (against phytopathogens) or directly (the solubilization of mineral nutrients) by producing phytohormones and specific enzymes such as 1-aminocyclopropane-1-carboxylate deaminase. The book covers biochemical processes such as physiological, metabolic, etc. of plant and microbe interactions, the biochemistry of biological systems, the interaction of biological systems above-ground or within the rhizosphere, and the history of growth promoting microbiomes, their roles in phytoremediation efficiency, physiological and biochemical studies, chemical communication and signaling mechanisms. - Covers agricultural aspects in which the biochemistry in between plants and microbes helps us understand interactions in the rhizosphere - Helps readers understand the molecular and biochemical approaches of plant-microbe interactions - Enables an understanding of plant microbe interactions which will help to improve crop production