The techniques described in this monograph form the basis of running an optimally efficient modern day power system. It is a must-read for all students and researchers working on the cutting edge of electric power systems.
Research centering on blood flow in the heart continues to hold an important position, especially since a better understanding of the subject may help reduce the incidence of coronary arterial disease and heart attacks. This book summarizes recent advances in the field; it is the product of fruitful cooperation among international scientists who met in Japan in May, 1990 to discuss the regulation of coronary blood flow.
Accuracy requirements in radiation oncology have been defined in multiple publications; however, these have been based on differing radiation technologies. In the meantime, the uncertainties in radiation dosimetry reference standards have been reduced and more detailed patient outcome data are available. No comprehensive literature on accuracy and uncertainties in radiotherapy has been published so far. The IAEA has therefore developed a new international consensus document on accuracy requirements and uncertainties in radiation therapy, to promote safer and more effective patient treatments. This publication addresses accuracy and uncertainty issues related to the vast majority of radiotherapy departments including both external beam radiotherapy and brachytherapy. It covers clinical, radiobiological, dosimetric, technical and physical aspects.
With the demand for more advanced fighter aircraft, relying on unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore, it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelope. For today’s modern fighter aircraft, the basic flight mechanical characteristics change between linear and nonlinear as well as stable and unstable as an effect of the desired capability of advanced maneuvering at subsonic, transonic and supersonic speeds. This thesis combines the subject of system identification, which is the art of building mathematical models of dynamical systems based on measurements, with aeronautical engineering in order to find methods for identifying flight mechanical characteristics. Here, some challenging aeronautical identification problems, estimating model parameters from flight-testing, are treated. Two aspects are considered. The first is online identification during flight-testing with the intent to aid the engineers in the analysis process when looking at the flight mechanical characteristics. This will also ensure that enough information is available in the resulting test data for post-flight analysis. Here, a frequency domain method is used. An existing method has been developed further by including an Instrumental Variable approach to take care of noisy data including atmospheric turbulence and by a sensor-fusion step to handle varying excitation during an experiment. The method treats linear systems that can be both stable and unstable working under feedback control. An experiment has been performed on a radio-controlled demonstrator aircraft. For this, multisine input signals have been designed and the results show that it is possible to perform more time-efficient flight-testing compared with standard input signals. The other aspect is post-flight identification of nonlinear characteristics. Here the properties of a parameterized observer approach, using a prediction-error method, are investigated. This approach is compared with four other methods for some test cases. It is shown that this parameterized observer approach is the most robust one with respect to noise disturbances and initial offsets. Another attractive property is that no user parameters have to be tuned by the engineers in order to get the best performance. All methods in this thesis have been validated on simulated data where the system is known, and have also been tested on real flight test data. Both of the investigated approaches show promising results.
This book is the standard reference based on roughly 20 years of research on atmospheric rivers, emphasizing progress made on key research and applications questions and remaining knowledge gaps. The book presents the history of atmospheric-rivers research, the current state of scientific knowledge, tools, and policy-relevant (science-informed) problems that lend themselves to real-world application of the research—and how the topic fits into larger national and global contexts. This book is written by a global team of authors who have conducted and published the majority of critical research on atmospheric rivers over the past years. The book is intended to benefit practitioners in the fields of meteorology, hydrology and related disciplines, including students as well as senior researchers.
This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the “lab-on-fiber” technology. Inspired by the well-established "lab on-a-chip" concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications. Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate description of the main developments and achievements in the lab-on-fiber technology roadmap, also highlighting the new perspectives and challenges to be faced. This book is essential for scientists interested in the cutting-edge fiber optic technology, but also for graduate students.
This handbook offers the first comprehensive, state-of-the-field guide to past weather and climate and their role in human societies. Bringing together dozens of international specialists from the sciences and humanities, this volume describes the methods, sources, and major findings of historical climate reconstruction and impact research. Its chapters take the reader through each key source of past climate and weather information and each technique of analysis; through each historical period and region of the world; through the major topics of climate and history and core case studies; and finally through the history of climate ideas and science. Using clear, non-technical language, The Palgrave Handbook of Climate History serves as a textbook for students, a reference guide for specialists and an introduction to climate history for scholars and interested readers.
The core use of language is in face-to-face conversation. This is characterized by rapid turn-taking. This turn-taking poses a number central puzzles for the psychology of language. Consider, for example, that in large corpora the gap between turns is on the order of 100 to 300 ms, but the latencies involved in language production require minimally between 600 ms (for a single word) or 1500 ms (for as simple sentence). This implies that participants in conversation are predicting the ends of the incoming turn and preparing in advance. But how is this done? What aspects of this prediction are done when? What happens when the prediction is wrong? What stops participants coming in too early? If the system is running on prediction, why is there consistently a mode of 100 to 300 ms in response time? The timing puzzle raises further puzzles: it seems that comprehension must run parallel with the preparation for production, but it has been presumed that there are strict cognitive limitations on more than one central process running at a time. How is this bottleneck overcome? Far from being 'easy' as some psychologists have suggested, conversation may be one of the most demanding cognitive tasks in our everyday lives. Further questions naturally arise: how do children learn to master this demanding task, and what is the developmental trajectory in this domain? Research shows that aspects of turn-taking, such as its timing, are remarkably stable across languages and cultures, but the word order of languages varies enormously. How then does prediction of the incoming turn work when the verb (often the informational nugget in a clause) is at the end? Conversely, how can production work fast enough in languages that have the verb at the beginning, thereby requiring early planning of the whole clause? What happens when one changes modality, as in sign languages – with the loss of channel constraints is turn-taking much freer? And what about face-to-face communication amongst hearing individuals – do gestures, gaze, and other body behaviors facilitate turn-taking? One can also ask the phylogenetic question: how did such a system evolve? There seem to be parallels (analogies) in duetting bird species, and in a variety of monkey species, but there is little evidence of anything like this among the great apes. All this constitutes a neglected set of problems at the heart of the psychology of language and of the language sciences. This Research Topic contributes to advancing our understanding of these problems by summarizing recent work from psycholinguists, developmental psychologists, students of dialog and conversation analysis, linguists, phoneticians, and comparative ethologists.
This two-volume handbook presents a collection of novel methodologies with applications and illustrative examples in the areas of data-driven computational social sciences. Throughout this handbook, the focus is kept specifically on business and consumer-oriented applications with interesting sections ranging from clustering and network analysis, meta-analytics, memetic algorithms, machine learning, recommender systems methodologies, parallel pattern mining and data mining to specific applications in market segmentation, travel, fashion or entertainment analytics. A must-read for anyone in data-analytics, marketing, behavior modelling and computational social science, interested in the latest applications of new computer science methodologies. The chapters are contributed by leading experts in the associated fields.The chapters cover technical aspects at different levels, some of which are introductory and could be used for teaching. Some chapters aim at building a common understanding of the methodologies and recent application areas including the introduction of new theoretical results in the complexity of core problems. Business and marketing professionals may use the book to familiarize themselves with some important foundations of data science. The work is a good starting point to establish an open dialogue of communication between professionals and researchers from different fields. Together, the two volumes present a number of different new directions in Business and Customer Analytics with an emphasis in personalization of services, the development of new mathematical models and new algorithms, heuristics and metaheuristics applied to the challenging problems in the field. Sections of the book have introductory material to more specific and advanced themes in some of the chapters, allowing the volumes to be used as an advanced textbook. Clustering, Proximity Graphs, Pattern Mining, Frequent Itemset Mining, Feature Engineering, Network and Community Detection, Network-based Recommending Systems and Visualization, are some of the topics in the first volume. Techniques on Memetic Algorithms and their applications to Business Analytics and Data Science are surveyed in the second volume; applications in Team Orienteering, Competitive Facility-location, and Visualization of Products and Consumers are also discussed. The second volume also includes an introduction to Meta-Analytics, and to the application areas of Fashion and Travel Analytics. Overall, the two-volume set helps to describe some fundamentals, acts as a bridge between different disciplines, and presents important results in a rapidly moving field combining powerful optimization techniques allied to new mathematical models critical for personalization of services. Academics and professionals working in the area of business anyalytics, data science, operations research and marketing will find this handbook valuable as a reference. Students studying these fields will find this handbook useful and helpful as a secondary textbook.